These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 30952974)

  • 21. Electrical and Thermal Transport in Coplanar Polycrystalline Graphene-hBN Heterostructures.
    Barrios-Vargas JE; Mortazavi B; Cummings AW; Martinez-Gordillo R; Pruneda M; Colombo L; Rabczuk T; Roche S
    Nano Lett; 2017 Mar; 17(3):1660-1664. PubMed ID: 28195494
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Thermal Transport of AlN/Graphene/3C-SiC Typical Heterostructures with Different Crystallinities of Graphene.
    Yang B; Peng C; Song M; Tang Y; Wu Y; Wu X; Zheng H
    ACS Appl Mater Interfaces; 2023 Jan; 15(1):2384-2395. PubMed ID: 36539985
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Molecular dynamics study of interfacial thermal transport between silicene and substrates.
    Zhang J; Hong Y; Tong Z; Xiao Z; Bao H; Yue Y
    Phys Chem Chem Phys; 2015 Oct; 17(37):23704-10. PubMed ID: 26266456
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Enhanced magnetic and thermoelectric properties in epitaxial polycrystalline SrRuO
    Woo S; Lee SA; Mun H; Choi YG; Zhung CJ; Shin S; Lacotte M; David A; Prellier W; Park T; Kang WN; Lee JS; Kim SW; Choi WS
    Nanoscale; 2018 Mar; 10(9):4377-4384. PubMed ID: 29450417
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Transferability of interatomic potentials for silicene.
    Maździarz M
    Beilstein J Nanotechnol; 2023; 14():574-585. PubMed ID: 37200833
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Controlling Morphology in Polycrystalline Films by Nucleation and Growth from Metastable Nanocrystals.
    Singh A; Lutz L; Ong GK; Bustillo K; Raoux S; Jordan-Sweet JL; Milliron DJ
    Nano Lett; 2018 Sep; 18(9):5530-5537. PubMed ID: 30080050
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Unusual Thermal Boundary Resistance in Halide Perovskites: A Way To Tune Ultralow Thermal Conductivity for Thermoelectrics.
    Liu T; Yue SY; Ratnasingham S; Degousée T; Varsini P; Briscoe J; McLachlan MA; Hu M; Fenwick O
    ACS Appl Mater Interfaces; 2019 Dec; 11(50):47507-47515. PubMed ID: 31752489
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Tailoring the thermal and electrical transport properties of graphene films by grain size engineering.
    Ma T; Liu Z; Wen J; Gao Y; Ren X; Chen H; Jin C; Ma XL; Xu N; Cheng HM; Ren W
    Nat Commun; 2017 Feb; 8():14486. PubMed ID: 28205514
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Defect engineering for thermal transport properties of nanocrystalline molybdenum diselenide.
    Sabbaghi S; Bazargan V; Hosseinian E
    Nanoscale; 2023 Aug; 15(30):12634-12647. PubMed ID: 37462987
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Microscale Imaging of Thermal Conductivity Suppression at Grain Boundaries.
    Isotta E; Jiang S; Moller G; Zevalkink A; Snyder GJ; Balogun O
    Adv Mater; 2023 Sep; 35(38):e2302777. PubMed ID: 37310868
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Density functional theory study of the mechanical behavior of silicene and development of a Tersoff interatomic potential model tailored for elastic behavior.
    Yoo S; Lee B; Kang K
    Nanotechnology; 2021 Apr; 32(29):. PubMed ID: 33770767
    [TBL] [Abstract][Full Text] [Related]  

  • 32. First-Principles Prediction of Ultralow Lattice Thermal Conductivity of Dumbbell Silicene: A Comparison with Low-Buckled Silicene.
    Peng B; Zhang H; Shao H; Xu Y; Zhang R; Lu H; Zhang DW; Zhu H
    ACS Appl Mater Interfaces; 2016 Aug; 8(32):20977-85. PubMed ID: 27460331
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Interfacial thermal conductance of a silicene/graphene bilayer heterostructure and the effect of hydrogenation.
    Liu B; Baimova JA; Reddy CD; Law AW; Dmitriev SV; Wu H; Zhou K
    ACS Appl Mater Interfaces; 2014 Oct; 6(20):18180-8. PubMed ID: 25308778
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Enhanced in-plane thermoelectric figure of merit in p-type SiGe thin films by nanograin boundaries.
    Lu J; Guo R; Dai W; Huang B
    Nanoscale; 2015 Apr; 7(16):7331-9. PubMed ID: 25824614
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Highly Distorted Grain Boundary with an Enhanced Carrier/Phonon Segregation Effect Facilitates High-Performance Thermoelectric Materials.
    Li S; Huang Z; Wang R; Zhao W; Luo J; Xiao Y; Pan F
    ACS Appl Mater Interfaces; 2021 Nov; 13(43):51018-51027. PubMed ID: 34696584
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Direct Visualization of Thermal Conductivity Suppression Due to Enhanced Phonon Scattering Near Individual Grain Boundaries.
    Sood A; Cheaito R; Bai T; Kwon H; Wang Y; Li C; Yates L; Bougher T; Graham S; Asheghi M; Goorsky M; Goodson KE
    Nano Lett; 2018 Jun; 18(6):3466-3472. PubMed ID: 29631399
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Remarkable Role of Grain Boundaries in the Thermal Transport Properties of Phosphorene.
    Liu X; Gao J; Zhang G; Zhao J; Zhang YW
    ACS Omega; 2020 Jul; 5(28):17416-17422. PubMed ID: 32715226
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Bilateral substrate effect on the thermal conductivity of two-dimensional silicon.
    Zhang X; Bao H; Hu M
    Nanoscale; 2015 Apr; 7(14):6014-22. PubMed ID: 25762032
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Polycrystallinity and stacking in CVD graphene.
    Tsen AW; Brown L; Havener RW; Park J
    Acc Chem Res; 2013 Oct; 46(10):2286-96. PubMed ID: 23135386
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Charge transport in polycrystalline graphene: challenges and opportunities.
    Cummings AW; Duong DL; Nguyen VL; Van Tuan D; Kotakoski J; Barrios Vargas JE; Lee YH; Roche S
    Adv Mater; 2014 Aug; 26(30):5079-94. PubMed ID: 24903153
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.