These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

305 related articles for article (PubMed ID: 30953098)

  • 1. More Pieces of Ancient than Recent Theoretical Minimal Proto-tRNA-Like RNA Rings in Genes Coding for tRNA Synthetases.
    Demongeot J; Seligmann H
    J Mol Evol; 2019 Jul; 87(4-6):152-174. PubMed ID: 30953098
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The Uroboros Theory of Life's Origin: 22-Nucleotide Theoretical Minimal RNA Rings Reflect Evolution of Genetic Code and tRNA-rRNA Translation Machineries.
    Demongeot J; Seligmann H
    Acta Biotheor; 2019 Dec; 67(4):273-297. PubMed ID: 31388859
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Theoretical minimal RNA rings mimick molecular evolution before tRNA-mediated translation: codon-amino acid affinities increase from early to late RNA rings.
    Demongeot J; Seligmann H
    C R Biol; 2020 Jun; 343(1):111-122. PubMed ID: 32720493
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Bias for 3'-Dominant Codon Directional Asymmetry in Theoretical Minimal RNA Rings.
    Demongeot J; Seligmann H
    J Comput Biol; 2019 Sep; 26(9):1003-1012. PubMed ID: 31120344
    [No Abstract]   [Full Text] [Related]  

  • 5. Spontaneous evolution of circular codes in theoretical minimal RNA rings.
    Demongeot J; Seligmann H
    Gene; 2019 Jul; 705():95-102. PubMed ID: 30940527
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The primordial tRNA acceptor stem code from theoretical minimal RNA ring clusters.
    Demongeot J; Seligmann H
    BMC Genet; 2020 Jan; 21(1):7. PubMed ID: 31973715
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Theoretical minimal RNA rings designed according to coding constraints mimic deamination gradients.
    Demongeot J; Seligmann H
    Naturwissenschaften; 2019 Jul; 106(7-8):44. PubMed ID: 31267209
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Accretion history of large ribosomal subunits deduced from theoretical minimal RNA rings is congruent with histories derived from phylogenetic and structural methods.
    Demongeot J; Seligmann H
    Gene; 2020 May; 738():144436. PubMed ID: 32027954
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Theoretical minimal RNA rings recapitulate the order of the genetic code's codon-amino acid assignments.
    Demongeot J; Seligmann H
    J Theor Biol; 2019 Jun; 471():108-116. PubMed ID: 30935956
    [TBL] [Abstract][Full Text] [Related]  

  • 10. RNA Rings Strengthen Hairpin Accretion Hypotheses for tRNA Evolution: A Reply to Commentaries by Z.F. Burton and M. Di Giulio.
    Demongeot J; Seligmann H
    J Mol Evol; 2020 Apr; 88(3):243-252. PubMed ID: 32025759
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Class I and II aminoacyl-tRNA synthetase tRNA groove discrimination created the first synthetase-tRNA cognate pairs and was therefore essential to the origin of genetic coding.
    Carter CW; Wills PR
    IUBMB Life; 2019 Aug; 71(8):1088-1098. PubMed ID: 31190358
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Transfer RNA recognition by aminoacyl-tRNA synthetases.
    Beuning PJ; Musier-Forsyth K
    Biopolymers; 1999; 52(1):1-28. PubMed ID: 10737860
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Evolution of small and large ribosomal RNAs from accretion of tRNA subelements.
    Demongeot J; Seligmann H
    Biosystems; 2022 Dec; 222():104796. PubMed ID: 36306879
    [TBL] [Abstract][Full Text] [Related]  

  • 14. On the origin of the genetic code: signatures of its primordial complementarity in tRNAs and aminoacyl-tRNA synthetases.
    Rodin SN; Rodin AS
    Heredity (Edinb); 2008 Apr; 100(4):341-55. PubMed ID: 18322459
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Interaction of tRNAPhe and tRNAVal with aminoacyl-tRNA synthetases. A chemical modification study.
    Vlassov VV; Kern D; Romby P; Giegé R; Ebel JP
    Eur J Biochem; 1983 May; 132(3):537-44. PubMed ID: 6343077
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Glu-Q-tRNA(Asp) synthetase coded by the yadB gene, a new paralog of aminoacyl-tRNA synthetase that glutamylates tRNA(Asp) anticodon.
    Blaise M; Becker HD; Lapointe J; Cambillau C; Giegé R; Kern D
    Biochimie; 2005; 87(9-10):847-61. PubMed ID: 16164993
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Structural analogies between the 3' tRNA-like structure of brome mosaic virus RNA and yeast tRNATyr revealed by protection studies with yeast tyrosyl-tRNA synthetase.
    Perret V; Florentz C; Dreher T; Giege R
    Eur J Biochem; 1989 Nov; 185(2):331-9. PubMed ID: 2684668
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Coding triplets in the tRNA acceptor-TΨC arm and their role in present and past tRNA recognition.
    Agmon I; Fayerverker I; Mor T
    FEBS Lett; 2021 Apr; 595(7):913-924. PubMed ID: 33460451
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The role of the anticodon in recognition of tRNA by aminoacyl-tRNA synthetases.
    Kisselev LL
    Prog Nucleic Acid Res Mol Biol; 1985; 32():237-66. PubMed ID: 3911276
    [No Abstract]   [Full Text] [Related]  

  • 20. Codon assignment evolvability in theoretical minimal RNA rings.
    Demongeot J; Seligmann H
    Gene; 2021 Feb; 769():145208. PubMed ID: 33031892
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.