BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

321 related articles for article (PubMed ID: 30953117)

  • 1. Modulation of NK cells with checkpoint inhibitors in the context of cancer immunotherapy.
    Sanchez-Correa B; Lopez-Sejas N; Duran E; Labella F; Alonso C; Solana R; Tarazona R
    Cancer Immunol Immunother; 2019 May; 68(5):861-870. PubMed ID: 30953117
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Natural killer cell immunotherapies against cancer: checkpoint inhibitors and more.
    Chiossone L; Vienne M; Kerdiles YM; Vivier E
    Semin Immunol; 2017 Jun; 31():55-63. PubMed ID: 28943093
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Targeting Checkpoint Receptors and Molecules for Therapeutic Modulation of Natural Killer Cells.
    Kim N; Kim HS
    Front Immunol; 2018; 9():2041. PubMed ID: 30250471
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Natural killer cells unleashed: Checkpoint receptor blockade and BiKE/TriKE utilization in NK-mediated anti-tumor immunotherapy.
    Davis ZB; Vallera DA; Miller JS; Felices M
    Semin Immunol; 2017 Jun; 31():64-75. PubMed ID: 28882429
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Targeting NK Cell Checkpoint Receptors or Molecules for Cancer Immunotherapy.
    Zhang C; Liu Y
    Front Immunol; 2020; 11():1295. PubMed ID: 32714324
    [TBL] [Abstract][Full Text] [Related]  

  • 6. NK cell-based immunotherapy for cancer.
    Fang F; Xiao W; Tian Z
    Semin Immunol; 2017 Jun; 31():37-54. PubMed ID: 28838796
    [TBL] [Abstract][Full Text] [Related]  

  • 7. NK Cell Dysfunction and Checkpoint Immunotherapy.
    Bi J; Tian Z
    Front Immunol; 2019; 10():1999. PubMed ID: 31552017
    [TBL] [Abstract][Full Text] [Related]  

  • 8. TIGIT and CD96: new checkpoint receptor targets for cancer immunotherapy.
    Dougall WC; Kurtulus S; Smyth MJ; Anderson AC
    Immunol Rev; 2017 Mar; 276(1):112-120. PubMed ID: 28258695
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Resistance Mechanisms to Immune-Checkpoint Blockade in Cancer: Tumor-Intrinsic and -Extrinsic Factors.
    Pitt JM; Vétizou M; Daillère R; Roberti MP; Yamazaki T; Routy B; Lepage P; Boneca IG; Chamaillard M; Kroemer G; Zitvogel L
    Immunity; 2016 Jun; 44(6):1255-69. PubMed ID: 27332730
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Immunosenescence: limitations of natural killer cell-based cancer immunotherapy.
    Tarazona R; Sanchez-Correa B; Casas-Avilés I; Campos C; Pera A; Morgado S; López-Sejas N; Hassouneh F; Bergua JM; Arcos MJ; Bañas H; Casado JG; Durán E; Labella F; Solana R
    Cancer Immunol Immunother; 2017 Feb; 66(2):233-245. PubMed ID: 27530271
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Harnessing NK Cells for Cancer Treatment.
    Minetto P; Guolo F; Pesce S; Greppi M; Obino V; Ferretti E; Sivori S; Genova C; Lemoli RM; Marcenaro E
    Front Immunol; 2019; 10():2836. PubMed ID: 31867006
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Designing multivalent proteins based on natural killer cell receptors and their ligands as immunotherapy for cancer.
    Smits NC; Coupet TA; Godbersen C; Sentman CL
    Expert Opin Biol Ther; 2016 Sep; 16(9):1105-12. PubMed ID: 27248342
    [TBL] [Abstract][Full Text] [Related]  

  • 13. New insight into cancer immunotherapy.
    Escribese MM; Barber D
    Allergol Immunopathol (Madr); 2017 Dec; 45 Suppl 1():50-55. PubMed ID: 29108766
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Advances in targeting co-inhibitory and co-stimulatory pathways in transplantation settings: the Yin to the Yang of cancer immunotherapy.
    Kean LS; Turka LA; Blazar BR
    Immunol Rev; 2017 Mar; 276(1):192-212. PubMed ID: 28258702
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Targeting NK-cell checkpoints for cancer immunotherapy.
    Muntasell A; Ochoa MC; Cordeiro L; Berraondo P; López-Díaz de Cerio A; Cabo M; López-Botet M; Melero I
    Curr Opin Immunol; 2017 Apr; 45():73-81. PubMed ID: 28236750
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Immunotherapy as an Option for Cancer Treatment.
    Rusch T; Bayry J; Werner J; Shevchenko I; Bazhin AV
    Arch Immunol Ther Exp (Warsz); 2018 Apr; 66(2):89-96. PubMed ID: 29026920
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The Rise of NK Cell Checkpoints as Promising Therapeutic Targets in Cancer Immunotherapy.
    Sun H; Sun C
    Front Immunol; 2019; 10():2354. PubMed ID: 31681269
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Natural killer cells as a promising therapeutic target for cancer immunotherapy.
    Kim N; Lee HH; Lee HJ; Choi WS; Lee J; Kim HS
    Arch Pharm Res; 2019 Jul; 42(7):591-606. PubMed ID: 30895524
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Immune checkpoint markers and anti-CD20-mediated NK cell activation.
    Wang Z; Weiner GJ
    J Leukoc Biol; 2021 Oct; 110(4):723-733. PubMed ID: 33615552
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Molecular Pathways: Targeting CD96 and TIGIT for Cancer Immunotherapy.
    Blake SJ; Dougall WC; Miles JJ; Teng MW; Smyth MJ
    Clin Cancer Res; 2016 Nov; 22(21):5183-5188. PubMed ID: 27620276
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.