These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 30953120)

  • 1. Functional analysis of putative transporters involved in oligotrophic growth of Rhodococcus erythropolis N9T-4.
    Matsuoka T; Yoshida N
    Appl Microbiol Biotechnol; 2019 May; 103(10):4167-4175. PubMed ID: 30953120
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A unique intracellular compartment formed during the oligotrophic growth of Rhodococcus erythropolis N9T-4.
    Yoshida N; Yano T; Kedo K; Fujiyoshi T; Nagai R; Iwano M; Taguchi E; Nishida T; Takagi H
    Appl Microbiol Biotechnol; 2017 Jan; 101(1):331-340. PubMed ID: 27717963
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Utilization of atmospheric ammonia by an extremely oligotrophic bacterium, Rhodococcus erythropolis N9T-4.
    Yoshida N; Inaba S; Takagi H
    J Biosci Bioeng; 2014 Jan; 117(1):28-32. PubMed ID: 23849805
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The glyoxylate shunt is essential for CO2-requiring oligotrophic growth of Rhodococcus erythropolis N9T-4.
    Yano T; Yoshida N; Yu F; Wakamatsu M; Takagi H
    Appl Microbiol Biotechnol; 2015 Jul; 99(13):5627-37. PubMed ID: 25750047
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An extremely oligotrophic bacterium, Rhodococcus erythropolis N9T-4, isolated from crude oil.
    Ohhata N; Yoshida N; Egami H; Katsuragi T; Tani Y; Takagi H
    J Bacteriol; 2007 Oct; 189(19):6824-31. PubMed ID: 17675378
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Establishment of an effective oligotrophic cultivation system for Rhodococcus erythropolis N9T-4.
    Matsuoka T; Yoshida N
    Biosci Biotechnol Biochem; 2018 Sep; 82(9):1652-1655. PubMed ID: 29862898
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Gene expression analysis of methylotrophic oxidoreductases involved in the oligotrophic growth of Rhodococcus erythropolis N9T-4.
    Yoshida N; Hayasaki T; Takagi H
    Biosci Biotechnol Biochem; 2011; 75(1):123-7. PubMed ID: 21228466
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Intracellular accumulation of trehalose and glycogen in an extreme oligotroph, Rhodococcus erythropolis N9T-4.
    Yano T; Funamizu Y; Yoshida N
    Biosci Biotechnol Biochem; 2016; 80(3):610-3. PubMed ID: 26540516
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Carbon monoxide utilization of an extremely oligotrophic bacterium, Rhodococcus erythropolis N9T-4.
    Yano T; Yoshida N; Takagi H
    J Biosci Bioeng; 2012 Jul; 114(1):53-5. PubMed ID: 22561879
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Oligotrophic Gene Expression in
    Ikeda Y; Kishimoto M; Shintani M; Yoshida N
    Microorganisms; 2022 Aug; 10(9):. PubMed ID: 36144327
    [No Abstract]   [Full Text] [Related]  

  • 11. Identification of a transcriptional regulator for oligotrophy-responsive promoter in
    Ikegaya R; Shintani M; Kimbara K; Fakuda M; Yoshida N
    Biosci Biotechnol Biochem; 2020 Apr; 84(4):865-868. PubMed ID: 31884880
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Trehalose Recycling Promotes Energy-Efficient Biosynthesis of the Mycobacterial Cell Envelope.
    Pohane AA; Carr CR; Garhyan J; Swarts BM; Siegrist MS
    mBio; 2021 Jan; 12(1):. PubMed ID: 33468692
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Carbon source-induced modifications in the mycolic acid content and cell wall permeability of Rhodococcus erythropolis E1.
    Sokolovská I; Rozenberg R; Riez C; Rouxhet PG; Agathos SN; Wattiau P
    Appl Environ Microbiol; 2003 Dec; 69(12):7019-27. PubMed ID: 14660344
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Characterization of biosurfactants produced by the oil-degrading bacterium Rhodococcus erythropolis S67 at low temperature.
    Luong TM; Ponamoreva ON; Nechaeva IA; Petrikov KV; Delegan YA; Surin AK; Linklater D; Filonov AE
    World J Microbiol Biotechnol; 2018 Jan; 34(2):20. PubMed ID: 29302805
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Trehalose-recycling ABC transporter LpqY-SugA-SugB-SugC is essential for virulence of Mycobacterium tuberculosis.
    Kalscheuer R; Weinrick B; Veeraraghavan U; Besra GS; Jacobs WR
    Proc Natl Acad Sci U S A; 2010 Dec; 107(50):21761-6. PubMed ID: 21118978
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Pathway to synthesis and processing of mycolic acids in Mycobacterium tuberculosis.
    Takayama K; Wang C; Besra GS
    Clin Microbiol Rev; 2005 Jan; 18(1):81-101. PubMed ID: 15653820
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Two transporters essential for reassimilation of novel cholate metabolites by Rhodococcus jostii RHA1.
    Swain K; Casabon I; Eltis LD; Mohn WW
    J Bacteriol; 2012 Dec; 194(24):6720-7. PubMed ID: 23024344
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Structural analysis of mycolic acids from phenol-degrading strain of Rhodococcus erythropolis by liquid chromatography-tandem mass spectrometry.
    Kolouchová I; Schreiberová O; Masák J; Sigler K; Rezanka T
    Folia Microbiol (Praha); 2012 Nov; 57(6):473-83. PubMed ID: 22610598
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Identification and structural characterisation of novel trehalose dinocardiomycolates from n-alkane-grown Rhodococcus opacus 1CP.
    Niescher S; Wray V; Lang S; Kaschabek SR; Schlömann M
    Appl Microbiol Biotechnol; 2006 May; 70(5):605-11. PubMed ID: 16133336
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Surfactant production by the Rhodococcus erythropolis sH-5 bacterium grown on various carbon sources].
    Gogotov IN; Khodakov RS
    Prikl Biokhim Mikrobiol; 2008; 44(2):207-12. PubMed ID: 18669264
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.