These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 30953173)

  • 61. Cytological analysis of ginseng carpel development.
    Silva J; Kim YJ; Xiao D; Sukweenadhi J; Hu T; Kwon WS; Hu J; Yang DC; Zhang D
    Protoplasma; 2017 Sep; 254(5):1909-1922. PubMed ID: 28154963
    [TBL] [Abstract][Full Text] [Related]  

  • 62. The mean and variability of a floral trait have opposing effects on fitness traits.
    Dai C; Liang X; Ren J; Liao M; Li J; Galloway LF
    Ann Bot; 2016 Mar; 117(3):421-9. PubMed ID: 26749589
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Intermittent pollen-tube growth in pistils of alders (Alnus).
    Sogo A; Tobe H
    Proc Natl Acad Sci U S A; 2005 Jun; 102(24):8770-5. PubMed ID: 15932945
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Pollination of Schisandra henryi (Schisandraceae) by female, pollen-eating Megommata species (Cecidomyiidae, Diptera) in south-central China.
    Yuan LC; Luo YB; Thien LB; Fan JH; Xu HL; Chen ZD
    Ann Bot; 2007 Mar; 99(3):451-60. PubMed ID: 17237212
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Ontogeny of floral organs in flax (Linum usitatissimum; Linaceae).
    Schewe LC; Sawhney VK; Davis AR
    Am J Bot; 2011 Jul; 98(7):1077-85. PubMed ID: 21730334
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Two separate pathways including SlCLV1, SlSTM and SlCUC that control carpel development in a bisexual mutant of Silene latifolia.
    Koizumi A; Yamanaka K; Nishihara K; Kazama Y; Abe T; Kawano S
    Plant Cell Physiol; 2010 Feb; 51(2):282-93. PubMed ID: 20064843
    [TBL] [Abstract][Full Text] [Related]  

  • 67. An Evolutionary Framework for Carpel Developmental Control Genes.
    Pfannebecker KC; Lange M; Rupp O; Becker A
    Mol Biol Evol; 2017 Feb; 34(2):330-348. PubMed ID: 28049761
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Flowers and inflorescences of the seagrass Posidonia (Posidoniaceae, Alismatales).
    Remizowa MV; Sokoloff DD; Calvo S; Tomasello A; Rudall PJ
    Am J Bot; 2012 Oct; 99(10):1592-608. PubMed ID: 23032814
    [TBL] [Abstract][Full Text] [Related]  

  • 69. The bHLH transcription factor SPATULA enables cytokinin signaling, and both activate auxin biosynthesis and transport genes at the medial domain of the gynoecium.
    Reyes-Olalde JI; Zúñiga-Mayo VM; Serwatowska J; Chavez Montes RA; Lozano-Sotomayor P; Herrera-Ubaldo H; Gonzalez-Aguilera KL; Ballester P; Ripoll JJ; Ezquer I; Paolo D; Heyl A; Colombo L; Yanofsky MF; Ferrandiz C; Marsch-Martínez N; de Folter S
    PLoS Genet; 2017 Apr; 13(4):e1006726. PubMed ID: 28388635
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Perfect syncarpy in apple (Malus x domestica 'Summerland McIntosh') and its implications for pollination, seed distribution and fruit production (Rosaceae: Maloideae).
    Sheffield CS; Smith RF; Kevan PG
    Ann Bot; 2005 Mar; 95(4):583-91. PubMed ID: 15661749
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Floral development of an asexual and female-like mutant carrying two deletions in gynoecium-suppressing and stamen-promoting functional regions on the Y chromosome of the dioecious plant Silene latifolia.
    Koizumi A; Amanai Y; Ishii K; Nishihara K; Kazama Y; Uchida W; Kawano S
    Plant Cell Physiol; 2007 Oct; 48(10):1450-61. PubMed ID: 17720717
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Pollen-pistil interaction in pawpaw (
    Losada JM; Hormaza JI; Lora J
    Am J Bot; 2017 Dec; 104(12):1891-1903. PubMed ID: 29217674
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Sources of variation in pollinator contribution within a guild: the effects of plant and pollinator factors.
    Pellmyr O; Thompson JN
    Oecologia; 1996 Sep; 107(4):595-604. PubMed ID: 28307405
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Exploring Cell Wall Composition and Modifications During the Development of the Gynoecium Medial Domain in
    Herrera-Ubaldo H; de Folter S
    Front Plant Sci; 2018; 9():454. PubMed ID: 29706978
    [TBL] [Abstract][Full Text] [Related]  

  • 75. An evo-devo view of the gynoecium.
    Reyes-Olalde JI; Aida M; de Folter S
    J Exp Bot; 2023 Aug; 74(14):3933-3950. PubMed ID: 37075814
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Radiation of pollination systems in the Iridaceae of sub-Saharan Africa.
    Goldblatt P; Manning JC
    Ann Bot; 2006 Mar; 97(3):317-44. PubMed ID: 16377653
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Competition drives specialization in pollination systems through costs to male fitness.
    Muchhala N; Brown Z; Armbruster WS; Potts MD
    Am Nat; 2010 Dec; 176(6):732-43. PubMed ID: 20954889
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Allelic differences at two loci govern different mechanisms of intraflower self-pollination in self-pollinating strains of periwinkle.
    Kulkarni RN; Sreevalli Y; Baskaran K
    J Hered; 2005; 96(1):71-7. PubMed ID: 15598715
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Wind-dragged corolla enhances self-pollination: a new mechanism of delayed self-pollination.
    Qu R; Li X; Luo Y; Dong M; Xu H; Chen X; Dafni A
    Ann Bot; 2007 Dec; 100(6):1155-64. PubMed ID: 17881336
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Oil collecting bees and Byrsonima cydoniifolia A. Juss. (Malpighiaceae) interactions: the prevalence of long-distance cross pollination driving reproductive success.
    Sazan MS; Bezerra AD; Freitas BM
    An Acad Bras Cienc; 2014 Mar; 86(1):347-57. PubMed ID: 24676172
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.