BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

155 related articles for article (PubMed ID: 30953174)

  • 1. Mesopore structure in Camellia Oleifera shell.
    Wang Q; Chang S; Tan Y; Hu J
    Protoplasma; 2019 Jul; 256(4):1145-1151. PubMed ID: 30953174
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Anatomical structure of Camellia oleifera shell.
    Hu J; Shi Y; Liu Y; Chang S
    Protoplasma; 2018 Nov; 255(6):1777-1784. PubMed ID: 29868989
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Anatomy and lignin deposition of stone cell in Camellia oleifera shell during the young stage.
    Wang Q; Hu J; Yang T; Chang S
    Protoplasma; 2021 Mar; 258(2):361-370. PubMed ID: 33106960
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Efficient Preparation of Biodiesel Using Sulfonated
    Yang Z; Wang Y; Wu X; Quan W; Chen Q; Wang A
    Molecules; 2024 Jun; 29(12):. PubMed ID: 38930818
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Camellia oleifera shell as an alternative feedstock for furfural production using a high surface acidity solid acid catalyst.
    Zhang L; He Y; Zhu Y; Liu Y; Wang X
    Bioresour Technol; 2018 Feb; 249():536-541. PubMed ID: 29080517
    [TBL] [Abstract][Full Text] [Related]  

  • 6. High mesoporosity phosphorus-containing biochar fabricated from Camellia oleifera shells: Impressive tetracycline adsorption performance and promotion of pyrophosphate-like surface functional groups (C-O-P bond).
    Liu Q; Li D; Cheng H; Cheng J; Du K; Hu Y; Chen Y
    Bioresour Technol; 2021 Jun; 329():124922. PubMed ID: 33713899
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Isolation and free radical scavenging activities of a novel biflavonoid from the shells of Camellia oleifera Abel.
    Ye Y; Guo Y; Luo YT; Wang YF
    Fitoterapia; 2012 Dec; 83(8):1585-9. PubMed ID: 22982330
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Green extraction of polysaccharides from Camellia oleifera fruit shell using tailor-made deep eutectic solvents.
    Feng S; Zhang J; Luo X; Xu Z; Liu K; Chen T; Zhou L; Ding C
    Int J Biol Macromol; 2023 Dec; 253(Pt 6):127286. PubMed ID: 37813220
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Applications of Chinese
    Quan W; Wang A; Gao C; Li C
    Front Chem; 2022; 10():921246. PubMed ID: 35685348
    [No Abstract]   [Full Text] [Related]  

  • 10. Nitrogen-doped porous carbon from Camellia oleifera shells with enhanced electrochemical performance.
    Zhai Y; Xu B; Zhu Y; Qing R; Peng C; Wang T; Li C; Zeng G
    Mater Sci Eng C Mater Biol Appl; 2016 Apr; 61():449-56. PubMed ID: 26838871
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of biochar and dicyandiamide combination on nitrous oxide emissions from Camellia oleifera field soil.
    Deng BL; Wang SL; Xu XT; Wang H; Hu DN; Guo XM; Shi QH; Siemann E; Zhang L
    Environ Sci Pollut Res Int; 2019 Feb; 26(4):4070-4077. PubMed ID: 30554317
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Development and cross-species transferability of unigene-derived microsatellite markers in an edible oil woody plant, Camellia oleifera (Theaceae).
    Jia BG; Lin Q; Feng YZ; Hu XY; Tan XF; Shao FG; Zhang L
    Genet Mol Res; 2015 Jun; 14(2):6906-16. PubMed ID: 26125898
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comparative study on fruit development and oil synthesis in two cultivars of Camellia oleifera.
    Zhang F; Li Z; Zhou J; Gu Y; Tan X
    BMC Plant Biol; 2021 Jul; 21(1):348. PubMed ID: 34301189
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Anti-inflammatory and antioxidative effects of Camellia oleifera Abel components.
    Xiao X; He L; Chen Y; Wu L; Wang L; Liu Z
    Future Med Chem; 2017 Nov; 9(17):2069-2079. PubMed ID: 28793800
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Generation and stabilization of CO
    Javed M; Belwal T; Huang H; Xu Y; Ettoumi FE; Li L; Fang X; Luo Z
    J Food Sci; 2022 Sep; 87(9):4027-4039. PubMed ID: 35975757
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Development of an in Vitro System to Simulate the Adsorption of Self-Emulsifying Tea (Camellia oleifera) Seed Oil.
    Sramala I; Pinket W; Pongwan P; Jarussophon S; Kasemwong K
    Molecules; 2016 Apr; 21(5):. PubMed ID: 27136528
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Facile synthesis of
    Ma B; Huang Y; Nie Z; Qiu X; Su D; Wang G; Yuan J; Xie X; Wu Z
    RSC Adv; 2019 Jun; 9(35):20424-20431. PubMed ID: 35514708
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Modified
    Liao D; Shi W; Gao J; Deng B; Yu R
    Nanomaterials (Basel); 2021 May; 11(5):. PubMed ID: 34065455
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Isolation of the sapogenin from defatted seeds of Camellia oleifera and its neuroprotective effects on dopaminergic neurons.
    Ye Y; Fang F; Li Y
    J Agric Food Chem; 2014 Jul; 62(26):6175-82. PubMed ID: 24909656
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Structural variations of lignin and lignin-carbohydrate complexes from the fruit shells of Camellia oleifera during ripening.
    Cheng X; Ning R; Li P; Zhang F; Wang K; Jiang J
    Int J Biol Macromol; 2023 Dec; 253(Pt 3):126946. PubMed ID: 37722639
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.