These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
234 related articles for article (PubMed ID: 30953279)
1. CaMPK9 increases the stability of CaWRKY40 transcription factor which triggers defense response in chickpea upon Fusarium oxysporum f. sp. ciceri Race1 infection. Chakraborty J; Ghosh P; Sen S; Nandi AK; Das S Plant Mol Biol; 2019 Jul; 100(4-5):411-431. PubMed ID: 30953279 [TBL] [Abstract][Full Text] [Related]
2. Inhibition of multiple defense responsive pathways by CaWRKY70 transcription factor promotes susceptibility in chickpea under Fusarium oxysporum stress condition. Chakraborty J; Sen S; Ghosh P; Jain A; Das S BMC Plant Biol; 2020 Jul; 20(1):319. PubMed ID: 32631232 [TBL] [Abstract][Full Text] [Related]
3. Analysis of root proteome unravels differential molecular responses during compatible and incompatible interaction between chickpea (Cicer arietinum L.) and Fusarium oxysporum f. sp. ciceri Race1 (Foc1). Chatterjee M; Gupta S; Bhar A; Chakraborti D; Basu D; Das S BMC Genomics; 2014 Nov; 15(1):949. PubMed ID: 25363865 [TBL] [Abstract][Full Text] [Related]
4. Physical interaction between nuclear accumulated CC-NB-ARC-LRR protein and WRKY64 promotes EDS1 dependent Fusarium wilt resistance in chickpea. Chakraborty J; Priya P; Dastidar SG; Das S Plant Sci; 2018 Nov; 276():111-133. PubMed ID: 30348309 [TBL] [Abstract][Full Text] [Related]
5. Fusarium oxysporum f.sp. ciceri race 1 induced redox state alterations are coupled to downstream defense signaling in root tissues of chickpea (Cicer arietinum L.). Gupta S; Bhar A; Chatterjee M; Das S PLoS One; 2013; 8(9):e73163. PubMed ID: 24058463 [TBL] [Abstract][Full Text] [Related]
6. Epigenetic and transcriptional control of chickpea WRKY40 promoter activity under Fusarium stress and its heterologous expression in Arabidopsis leads to enhanced resistance against bacterial pathogen. Chakraborty J; Ghosh P; Sen S; Das S Plant Sci; 2018 Nov; 276():250-267. PubMed ID: 30348325 [TBL] [Abstract][Full Text] [Related]
7. Transcriptomic dissection reveals wide spread differential expression in chickpea during early time points of Fusarium oxysporum f. sp. ciceri Race 1 attack. Gupta S; Bhar A; Chatterjee M; Ghosh A; Das S PLoS One; 2017; 12(5):e0178164. PubMed ID: 28542579 [TBL] [Abstract][Full Text] [Related]
8. Primary metabolism of chickpea is the initial target of wound inducing early sensed Fusarium oxysporum f. sp. ciceri race I. Gupta S; Chakraborti D; Sengupta A; Basu D; Das S PLoS One; 2010 Feb; 5(2):e9030. PubMed ID: 20140256 [TBL] [Abstract][Full Text] [Related]
9. A molecular insight into the early events of chickpea (Cicer arietinum) and Fusarium oxysporum f. sp. ciceri (race 1) interaction through cDNA-AFLP analysis. Gupta S; Chakraborti D; Rangi RK; Basu D; Das S Phytopathology; 2009 Nov; 99(11):1245-57. PubMed ID: 19821728 [TBL] [Abstract][Full Text] [Related]
10. Trichoderma mediate early and enhanced lignifications in chickpea during Fusarium oxysporum f. sp. ciceris infection. Meshram S; Patel JS; Yadav SK; Kumar G; Singh DP; Singh HB; Sarma BK J Basic Microbiol; 2019 Jan; 59(1):74-86. PubMed ID: 30284310 [TBL] [Abstract][Full Text] [Related]
12. A proteomic study of in-root interactions between chickpea pathogens: the root-knot nematode Meloidogyne artiellia and the soil-borne fungus Fusarium oxysporum f. sp. ciceris race 5. Palomares-Rius JE; Castillo P; Navas-Cortés JA; Jiménez-Díaz RM; Tena M J Proteomics; 2011 Sep; 74(10):2034-51. PubMed ID: 21640211 [TBL] [Abstract][Full Text] [Related]
13. Overexpression of CaMYB78 transcription factor enhances resistance response in chickpea against Fusarium oxysporum and negatively regulates anthocyanin biosynthetic pathway. Shriti S; Paul S; Das S Protoplasma; 2023 Mar; 260(2):589-605. PubMed ID: 35947211 [TBL] [Abstract][Full Text] [Related]
14. Changes in the redox status of chickpea roots in response to infection by Fusarium oxysporum f. sp. ciceris: apoplastic antioxidant enzyme activities and expression of oxidative stress-related genes. García-Limones C; Dorado G; Navas-Cortés JA; Jiménez-Díaz RM; Tena M Plant Biol (Stuttg); 2009 Mar; 11(2):194-203. PubMed ID: 19228326 [TBL] [Abstract][Full Text] [Related]
15. Structural and functional dissection of differentially expressed tomato WRKY transcripts in host defense response against the vascular wilt pathogen (Fusarium oxysporum f. sp. lycopersici). Aamir M; Singh VK; Dubey MK; Kashyap SP; Zehra A; Upadhyay RS; Singh S PLoS One; 2018; 13(4):e0193922. PubMed ID: 29709017 [TBL] [Abstract][Full Text] [Related]
16. Dynamics of Colonization and Expression of Pathogenicity Related Genes in Fusarium oxysporum f.sp. ciceri during Chickpea Vascular Wilt Disease Progression. Upasani ML; Gurjar GS; Kadoo NY; Gupta VS PLoS One; 2016; 11(5):e0156490. PubMed ID: 27227745 [TBL] [Abstract][Full Text] [Related]
17. Temporal and spatial changes in phenolic compounds in response to Fusarium wilt in chickpea and pigeonpea. Datta J; Lal N Cell Mol Biol (Noisy-le-grand); 2012 Dec; 58(1):96-102. PubMed ID: 23273197 [TBL] [Abstract][Full Text] [Related]
18. Infection by Meloidogyne artiellia does not break down resistance to races 0, 1a, and 2 of Fusarium oxysporum f. sp. ciceris in chickpea genotypes. Navas-Cortés JA; Landa BB; Rodríguez-López J; Jiménez-Díaz RM; Castillo P Phytopathology; 2008 Jun; 98(6):709-18. PubMed ID: 18944296 [TBL] [Abstract][Full Text] [Related]
19. Transcriptome profiling reveals the expression and regulation of genes associated with Fusarium wilt resistance in chickpea (Cicer arietinum L.). Garg V; Chitikineni A; Sharma M; Ghosh R; Samineni S; Varshney RK; Kudapa H Plant Genome; 2023 Sep; 16(3):e20340. PubMed ID: 37211948 [TBL] [Abstract][Full Text] [Related]