BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

391 related articles for article (PubMed ID: 30953756)

  • 21. In Vivo Quantitative Estimation of DNA-Dependent Interaction of Sox2 and Oct4 Using BirA-Catalyzed Site-Specific Biotinylation.
    Kulyyassov A; Ogryzko V
    Biomolecules; 2020 Jan; 10(1):. PubMed ID: 31963153
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Biotin Proximity Labeling to Identify Protein-Protein Interactions for Cavin1.
    Mendoza-Topaz C
    Methods Mol Biol; 2020; 2169():89-103. PubMed ID: 32548822
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Combined proximity labeling and affinity purification-mass spectrometry workflow for mapping and visualizing protein interaction networks.
    Liu X; Salokas K; Weldatsadik RG; Gawriyski L; Varjosalo M
    Nat Protoc; 2020 Oct; 15(10):3182-3211. PubMed ID: 32778839
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Locus-Specific Chromatin Proteome Revealed by Mass Spectrometry-Based CasID.
    Ugur E; Bartoschek MD; Leonhardt H
    Methods Mol Biol; 2020; 2175():109-121. PubMed ID: 32681487
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Shifting proteomes: limitations in using the BioID proximity labeling system to study SNARE protein trafficking during infection with intracellular pathogens.
    Jorgenson LM; Olson-Wood MG; Rucks EA
    Pathog Dis; 2021 Aug; 79(7):. PubMed ID: 34323972
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Proteomics of protein trafficking by in vivo tissue-specific labeling.
    Droujinine IA; Meyer AS; Wang D; Udeshi ND; Hu Y; Rocco D; McMahon JA; Yang R; Guo J; Mu L; Carey DK; Svinkina T; Zeng R; Branon T; Tabatabai A; Bosch JA; Asara JM; Ting AY; Carr SA; McMahon AP; Perrimon N
    Nat Commun; 2021 Apr; 12(1):2382. PubMed ID: 33888706
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Proximity labeling approaches to study protein complexes during virus infection.
    Zapatero-Belinchón FJ; Carriquí-Madroñal B; Gerold G
    Adv Virus Res; 2021; 109():63-104. PubMed ID: 33934830
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A bacterial display system for effective selection of protein-biotin ligase BirA variants with novel peptide specificity.
    Granhøj J; Dimke H; Svenningsen P
    Sci Rep; 2019 Mar; 9(1):4118. PubMed ID: 30858523
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Establishment of Proximity-Dependent Biotinylation Approaches in Different Plant Model Systems.
    Arora D; Abel NB; Liu C; Van Damme P; Yperman K; Eeckhout D; Vu LD; Wang J; Tornkvist A; Impens F; Korbei B; Van Leene J; Goossens A; De Jaeger G; Ott T; Moschou PN; Van Damme D
    Plant Cell; 2020 Nov; 32(11):3388-3407. PubMed ID: 32843435
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Proximity labeling in mammalian cells with TurboID and split-TurboID.
    Cho KF; Branon TC; Udeshi ND; Myers SA; Carr SA; Ting AY
    Nat Protoc; 2020 Dec; 15(12):3971-3999. PubMed ID: 33139955
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Using BioID for the Identification of Interacting and Proximal Proteins in Subcellular Compartments in Toxoplasma gondii.
    Bradley PJ; Rayatpisheh S; Wohlschlegel JA; Nadipuram SM
    Methods Mol Biol; 2020; 2071():323-346. PubMed ID: 31758461
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Efficient induction of proximity-dependent labelling by biotin feeding in BMAL1-BioID knock-in mice.
    Murata K; Mimura A; Suzuki H; Mikami N; Hamada Y; Kato K; Iki N; Ishida M; Daitoku Y; Tanimoto Y; Okiyoneda T; Fujiyama T; Dinh TTH; Mizuno S; Sugiyama F
    J Biochem; 2021 Dec; 170(4):453-461. PubMed ID: 33982090
    [TBL] [Abstract][Full Text] [Related]  

  • 33. MicroID2: A Novel Biotin Ligase Enables Rapid Proximity-Dependent Proteomics.
    Johnson BS; Chafin L; Farkas D; Adair J; Elhance A; Farkas L; Bednash JS; Londino JD
    Mol Cell Proteomics; 2022 Jul; 21(7):100256. PubMed ID: 35688383
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Biotin-Based Proximity Labeling of Protein Complexes in Planta.
    Khan M; Subramaniam R; Desveaux D
    Methods Mol Biol; 2021; 2200():425-440. PubMed ID: 33175391
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Proximity-dependent biotinylation mediated by TurboID to identify protein-protein interaction networks in yeast.
    Larochelle M; Bergeron D; Arcand B; Bachand F
    J Cell Sci; 2019 May; 132(11):. PubMed ID: 31064814
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Targeted and proximity-dependent promiscuous protein biotinylation by a mutant Escherichia coli biotin protein ligase.
    Cronan JE
    J Nutr Biochem; 2005 Jul; 16(7):416-8. PubMed ID: 15992681
    [TBL] [Abstract][Full Text] [Related]  

  • 37. BioID: A Proximity-Dependent Labeling Approach in Proteomics Study.
    Li P; Meng Y; Wang L; Di LJ
    Methods Mol Biol; 2019; 1871():143-151. PubMed ID: 30276738
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Engineering of ultraID, a compact and hyperactive enzyme for proximity-dependent biotinylation in living cells.
    Kubitz L; Bitsch S; Zhao X; Schmitt K; Deweid L; Roehrig A; Barazzone EC; Valerius O; Kolmar H; Béthune J
    Commun Biol; 2022 Jul; 5(1):657. PubMed ID: 35788163
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A proximity-labeling proteomic approach to investigate invadopodia molecular landscape in breast cancer cells.
    Thuault S; Mamelonet C; Salameh J; Ostacolo K; Chanez B; Salaün D; Baudelet E; Audebert S; Camoin L; Badache A
    Sci Rep; 2020 Apr; 10(1):6787. PubMed ID: 32321993
    [TBL] [Abstract][Full Text] [Related]  

  • 40. APEX Proximity Labeling as a Versatile Tool for Biological Research.
    Nguyen TMT; Kim J; Doan TT; Lee MW; Lee M
    Biochemistry; 2020 Jan; 59(3):260-269. PubMed ID: 31718172
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 20.