BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

241 related articles for article (PubMed ID: 30953778)

  • 1. Multi-level engineering of Baeyer-Villiger monooxygenase-based Escherichia coli biocatalysts for the production of C9 chemicals from oleic acid.
    Seo EJ; Kang CW; Woo JM; Jang S; Yeon YJ; Jung GY; Park JB
    Metab Eng; 2019 Jul; 54():137-144. PubMed ID: 30953778
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Improving catalytic activity of the Baeyer-Villiger monooxygenase-based Escherichia coli biocatalysts for the overproduction of (Z)-11-(heptanoyloxy)undec-9-enoic acid from ricinoleic acid.
    Woo JM; Jeon EY; Seo EJ; Seo JH; Lee DY; Yeon YJ; Park JB
    Sci Rep; 2018 Jul; 8(1):10280. PubMed ID: 29980730
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Engineering of Baeyer-Villiger monooxygenase-based Escherichia coli biocatalyst for large scale biotransformation of ricinoleic acid into (Z)-11-(heptanoyloxy)undec-9-enoic acid.
    Seo JH; Kim HH; Jeon EY; Song YH; Shin CS; Park JB
    Sci Rep; 2016 Jun; 6():28223. PubMed ID: 27311560
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Expression levels of chaperones influence biotransformation activity of recombinant Escherichia coli expressing Micrococcus luteus alcohol dehydrogenase and Pseudomonas putida Baeyer-Villiger monooxygenase.
    Baek AH; Jeon EY; Lee SM; Park JB
    Biotechnol Bioeng; 2015 May; 112(5):889-95. PubMed ID: 25545273
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Discovery and Engineering of a Novel Baeyer-Villiger Monooxygenase with High Normal Regioselectivity.
    Zhang GX; You ZN; Yu JM; Liu YY; Pan J; Xu JH; Li CX
    Chembiochem; 2021 Apr; 22(7):1190-1195. PubMed ID: 33205522
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Intracellular transformation rates of fatty acids are influenced by expression of the fatty acid transporter FadL in Escherichia coli cell membrane.
    Jeon EY; Song JW; Cha HJ; Lee SM; Lee J; Park JB
    J Biotechnol; 2018 Sep; 281():161-167. PubMed ID: 30016739
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Enzyme/whole-cell biotransformation of plant oils, yeast derived oils, and microalgae fatty acid methyl esters into n-nonanoic acid, 9-hydroxynonanoic acid, and 1,9-nonanedioic acid.
    Seo EJ; Yeon YJ; Seo JH; Lee JH; Boñgol JP; Oh Y; Park JM; Lim SM; Lee CG; Park JB
    Bioresour Technol; 2018 Mar; 251():288-294. PubMed ID: 29288957
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of PelB signal sequences on Pfe1 expression and ω-hydroxyundec-9-enoic acid biotransformation in recombinant Escherichia coli.
    Cho YH; Kim SJ; Kim JY; Lee DH; Park K; Park YC
    Appl Microbiol Biotechnol; 2018 Sep; 102(17):7407-7416. PubMed ID: 29936545
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Bioprocess engineering to produce 9-(nonanoyloxy) nonanoic acid by a recombinant Corynebacterium glutamicum-based biocatalyst.
    Kim H; Park S; Cho S; Yang J; Jeong K; Park J; Lee J
    J Ind Microbiol Biotechnol; 2017 Sep; 44(9):1301-1311. PubMed ID: 28567672
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Enzyme fusion for whole-cell biotransformation of long-chain sec-alcohols into esters.
    Jeon EY; Baek AH; Bornscheuer UT; Park JB
    Appl Microbiol Biotechnol; 2015 Aug; 99(15):6267-75. PubMed ID: 25636834
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Characterization of a new Baeyer-Villiger monooxygenase and conversion to a solely N-or S-oxidizing enzyme by a single R292 mutation.
    Catucci G; Zgrablic I; Lanciani F; Valetti F; Minerdi D; Ballou DP; Gilardi G; Sadeghi SJ
    Biochim Biophys Acta; 2016 Sep; 1864(9):1177-1187. PubMed ID: 27344049
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Escherichia coli Overexpressing a Baeyer-Villiger Monooxygenase from Acinetobacter radioresistens Becomes Resistant to Imipenem.
    Minerdi D; Zgrablic I; Castrignanò S; Catucci G; Medana C; Terlizzi ME; Gribaudo G; Gilardi G; Sadeghi SJ
    Antimicrob Agents Chemother; 2016 Jan; 60(1):64-74. PubMed ID: 26459905
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Completing the series of BVMOs involved in camphor metabolism of Pseudomonas putida NCIMB 10007 by identification of the two missing genes, their functional expression in E. coli, and biochemical characterization.
    Kadow M; Loschinski K; Sass S; Schmidt M; Bornscheuer UT
    Appl Microbiol Biotechnol; 2012 Oct; 96(2):419-29. PubMed ID: 22286514
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Metabolic engineering of Corynebacterium glutamicum for enhanced production of 5-aminovaleric acid.
    Shin JH; Park SH; Oh YH; Choi JW; Lee MH; Cho JS; Jeong KJ; Joo JC; Yu J; Park SJ; Lee SY
    Microb Cell Fact; 2016 Oct; 15(1):174. PubMed ID: 27717386
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cofactor specificity engineering of a long-chain secondary alcohol dehydrogenase from Micrococcus luteus for redox-neutral biotransformation of fatty acids.
    Seo EJ; Kim HJ; Kim MJ; Kim JS; Park JB
    Chem Commun (Camb); 2019 Nov; 55(96):14462-14465. PubMed ID: 31728457
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cloning, expression and characterization of a Baeyer-Villiger monooxygenase from Pseudomonas putida KT2440.
    Rehdorf J; Kirschner A; Bornscheuer UT
    Biotechnol Lett; 2007 Sep; 29(9):1393-8. PubMed ID: 17530181
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Vanillin production using Escherichia coli cells over-expressing isoeugenol monooxygenase of Pseudomonas putida.
    Yamada M; Okada Y; Yoshida T; Nagasawa T
    Biotechnol Lett; 2008 Apr; 30(4):665-70. PubMed ID: 18040605
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cloning, expression, and characterization of a Baeyer-Villiger monooxygenase from Pseudomonas fluorescens DSM 50106 in E. coli.
    Kirschner A; Altenbuchner J; Bornscheuer UT
    Appl Microbiol Biotechnol; 2007 Jan; 73(5):1065-72. PubMed ID: 16944127
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Solvent resistance pumps of Pseudomonas putida S12: Applications in 1-naphthol production and biocatalyst engineering.
    Janardhan Garikipati SV; Peeples TL
    J Biotechnol; 2015 Sep; 210():91-9. PubMed ID: 26143210
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Investigation of a New Type I Baeyer-Villiger Monooxygenase from Amycolatopsis thermoflava Revealed High Thermodynamic but Limited Kinetic Stability.
    Mansouri HR; Mihovilovic MD; Rudroff F
    Chembiochem; 2020 Apr; 21(7):971-977. PubMed ID: 31608538
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.