BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 30953979)

  • 1. Development of a coupled model of quantitative ion character-activity relationships-biotic ligand model (QICARs-BLM) for predicting toxicity for data poor metals.
    Meng X; Wang X; Ma Y; Wang Y
    J Hazard Mater; 2019 Jul; 373():620-629. PubMed ID: 30953979
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Using quantitative ion character-activity relationship (QICAR) method in evaluation of metal toxicity toward wheat.
    Luo X; Wang X; Tang Y; Liu Y; Wang Y
    Ecotoxicol Environ Saf; 2021 Sep; 221():112443. PubMed ID: 34166939
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Predicting the thresholds of metals with limited toxicity data with invertebrates in standard soils using quantitative ion character-activity relationships (QICAR).
    Li J; Wang X; Yang J; Liu Y; Naidu R
    J Hazard Mater; 2022 Feb; 423(Pt A):126982. PubMed ID: 34461537
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Modeling toxicity of binary metal mixtures (Cu(2+) -Ag(+) , Cu(2+) -Zn(2+) ) to lettuce, Lactuca sativa, with the biotic ligand model.
    Yen Le TT; Vijver MG; Jan Hendriks A; Peijnenburg WJ
    Environ Toxicol Chem; 2013 Jan; 32(1):137-43. PubMed ID: 23109233
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Quantitative ion character-activity relationship methods for assessing the ecotoxicity of soil metal(loid)s to lettuce.
    Luo X; Wang X; Xia C; Peng J; Wang Y; Tang Y; Gao F
    Environ Sci Pollut Res Int; 2023 Feb; 30(9):24521-24532. PubMed ID: 36336735
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Development of a biotic ligand model (BLM) predicting nickel toxicity to barley (Hordeum vulgare).
    Lock K; Van Eeckhout H; De Schamphelaere KA; Criel P; Janssen CR
    Chemosphere; 2007 Jan; 66(7):1346-52. PubMed ID: 16908050
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Biotic ligand model, a flexible tool for developing site-specific water quality guidelines for metals.
    Niyogi S; Wood CM
    Environ Sci Technol; 2004 Dec; 38(23):6177-92. PubMed ID: 15597870
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The relationship between metal toxicity and biotic ligand binding affinities in aquatic and soil organisms: a review.
    Ardestani MM; van Straalen NM; van Gestel CA
    Environ Pollut; 2014 Dec; 195():133-47. PubMed ID: 25217851
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Developing the relationship between metal ionic characters and ecological risk assessment screening values using QICAR.
    Li Z; Meng X; Wang Y; Wang X
    Environ Sci Pollut Res Int; 2020 Sep; 27(26):32954-32961. PubMed ID: 32524404
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Quantifying correlations of metal ionic characters with ecological soil screening levels (Eco-SSLs) of metals using QICAR models.
    Meng X; Wang X; Wang Y
    Chemosphere; 2019 Aug; 228():451-459. PubMed ID: 31051347
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Predicting effects of cations on copper toxicity to lettuce (Lactuca sativa) by the biotic ligand model.
    Le TT; Peijnenburg WJ; Hendriks AJ; Vijver MG
    Environ Toxicol Chem; 2012 Feb; 31(2):355-9. PubMed ID: 22105443
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Development of a multi-species biotic ligand model predicting the toxicity of trivalent chromium to barley root elongation in solution culture.
    Song N; Zhong X; Li B; Li J; Wei D; Ma Y
    PLoS One; 2014; 9(8):e105174. PubMed ID: 25119269
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Biotic ligand modeling approach: Synthesis of the effect of major cations on the toxicity of metals to soil and aquatic organisms.
    Ardestani MM; van Straalen NM; van Gestel CA
    Environ Toxicol Chem; 2015 Oct; 34(10):2194-204. PubMed ID: 25953362
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An improved biotic ligand model (BLM) for predicting Co(II)-toxicity to wheat root elongation: The influences of toxic metal speciation and accompanying ions.
    Wang X; Song N
    Ecotoxicol Environ Saf; 2019 Oct; 182():109433. PubMed ID: 31319244
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A new model for predicting time course toxicity of heavy metals based on Biotic Ligand Model (BLM).
    Hatano A; Shoji R
    Comp Biochem Physiol C Toxicol Pharmacol; 2010 Jan; 151(1):25-32. PubMed ID: 19689929
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Impacts of major cations (K(+), Na (+), Ca (2+), Mg (2+)) and protons on toxicity predictions of nickel and cadmium to lettuce (Lactuca sativa L.) using exposure models.
    Liu Y; Vijver MG; Peijnenburg WJ
    Ecotoxicology; 2014 Apr; 23(3):385-95. PubMed ID: 24510448
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Development of a biotic ligand model for acute zinc toxicity to barley root elongation.
    Wang X; Li B; Ma Y; Hua L
    Ecotoxicol Environ Saf; 2010 Sep; 73(6):1272-8. PubMed ID: 20570355
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The biotic ligand model for plants and metals: technical challenges for field application.
    Antunes PM; Berkelaar EJ; Boyle D; Hale BA; Hendershot W; Voigt A
    Environ Toxicol Chem; 2006 Mar; 25(3):875-82. PubMed ID: 16566174
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of major cations and pH on the acute toxicity of cadmium to the earthworm Eisenia fetida: implications for the biotic ligand model approach.
    Li LZ; Zhou DM; Luo XS; Wang P; Wang QY
    Arch Environ Contam Toxicol; 2008 Jul; 55(1):70-7. PubMed ID: 18175161
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Toxicity Assessment of Binary Metal Mixtures (Copper-Zinc) to Nitrification in Soilless Culture with the Extended Biotic Ligand Model.
    Liu A; Li J; Li M; Niu XY; Wang J
    Arch Environ Contam Toxicol; 2017 Feb; 72(2):312-319. PubMed ID: 28050624
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.