These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 30953979)

  • 41. Prediction of mono-, bi-, and trivalent metal cation relative toxicity to the seaweed Gracilaria domingensis (Gracilariales, Rhodophyta) in synthetic seawater.
    Mendes LF; Zambotti-Villela L; Yokoya NS; Bastos EL; Stevani CV; Colepicolo P
    Environ Toxicol Chem; 2013 Nov; 32(11):2571-5. PubMed ID: 23908020
    [TBL] [Abstract][Full Text] [Related]  

  • 42. The biotic ligand model: a historical overview.
    Paquin PR; Gorsuch JW; Apte S; Batley GE; Bowles KC; Campbell PG; Delos CG; Di Toro DM; Dwyer RL; Galvez F; Gensemer RW; Goss GG; Hostrand C; Janssen CR; McGeer JC; Naddy RB; Playle RC; Santore RC; Schneider U; Stubblefield WA; Wood CM; Wu KB
    Comp Biochem Physiol C Toxicol Pharmacol; 2002 Sep; 133(1-2):3-35. PubMed ID: 12428632
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Modeling cadmium and nickel toxicity to earthworms with the free ion approach.
    Qiu H; Vijver MG; van Gestel CA; He E; Peijnenburg WJ
    Environ Toxicol Chem; 2014 Feb; 33(2):438-46. PubMed ID: 24424623
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Integration of biotic ligand models (BLM) and bioaccumulation kinetics into a mechanistic framework for metal uptake in aquatic organisms.
    Veltman K; Huijbregts MA; Hendriks AJ
    Environ Sci Technol; 2010 Jul; 44(13):5022-8. PubMed ID: 20515030
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Metal Removal by a Free Surface Constructed Wetland and Prediction of Metal Bioavailability and Toxicity with Diffusive Gradients in Thin Films (DGT) and Biotic Ligand Model (BLM).
    Qin C; Xu X; Peck E
    Environ Manage; 2022 May; 69(5):994-1004. PubMed ID: 34811569
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Biotic ligand model of the acute toxicity of metals. 1. Technical basis.
    Di Toro DM; Allen HE; Bergman HL; Meyer JS; Paquin PR; Santore RC
    Environ Toxicol Chem; 2001 Oct; 20(10):2383-96. PubMed ID: 11596774
    [TBL] [Abstract][Full Text] [Related]  

  • 47. The biotic ligand model and a cellular approach to class B metal aquatic toxicity.
    Bell RA; Ogden N; Kramer JR
    Comp Biochem Physiol C Toxicol Pharmacol; 2002 Sep; 133(1-2):175-88. PubMed ID: 12356526
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Validation of Cu toxicity to barley root elongation in soil with a Terrestrial Biotic Ligand Model developed from sand culture.
    Lin Y; Allen HE; Di Toro DM
    Ecotoxicol Environ Saf; 2018 Feb; 148():336-345. PubMed ID: 29091836
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Effects of metals on earthworm life cycles: a review.
    Sivakumar S
    Environ Monit Assess; 2015 Aug; 187(8):530. PubMed ID: 26215824
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Prediction of Cd and Pb toxicity to Vibrio fischeri using biotic ligand-based models in soil.
    An J; Jeong S; Moon HS; Jho EH; Nam K
    J Hazard Mater; 2012 Feb; 203-204():69-76. PubMed ID: 22197563
    [TBL] [Abstract][Full Text] [Related]  

  • 51. A generic biotic ligand model quantifying the development in time of Ni toxicity to Enchytraeus crypticus.
    He E; Qiu H; Dimitrova K; Van Gestel CA
    Chemosphere; 2015 Apr; 124():170-6. PubMed ID: 25559177
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Using the quantitative ion character-activity relationships (QICAR) model to predict the solid-liquid release of metals in soil.
    Shi W; Wang X; Yang J; Wang Y; Li M
    J Hazard Mater; 2024 Jan; 461():132588. PubMed ID: 37738849
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Predicting water quality criteria for protecting aquatic life from physicochemical properties of metals or metalloids.
    Wu F; Mu Y; Chang H; Zhao X; Giesy JP; Wu KB
    Environ Sci Technol; 2013 Jan; 47(1):446-53. PubMed ID: 23199259
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Development and validation of a terrestrial biotic ligand model for Ni toxicity to barley root elongation for non-calcareous soils.
    Lin Y; Di Toro DM; Allen HE
    Environ Pollut; 2015 Jul; 202():41-9. PubMed ID: 25800936
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Extension of biotic ligand model to account for the effects of pH and phosphate in accurate prediction of arsenate toxicity.
    An J; Jeong B; Nam K
    J Hazard Mater; 2020 Mar; 385():121619. PubMed ID: 31757723
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Predicting acute copper toxicity to valve closure behavior in the freshwater clam Corbicula fluminea supports the biotic ligand model.
    Liao CM; Jou LJ; Lin CM; Chiang KC; Yeh CH; Chou BY
    Environ Toxicol; 2007 Jun; 22(3):295-307. PubMed ID: 17497636
    [TBL] [Abstract][Full Text] [Related]  

  • 57. An application of the biotic ligand model to predict the toxic effects of metal mixtures.
    Kamo M; Nagai T
    Environ Toxicol Chem; 2008 Jul; 27(7):1479-87. PubMed ID: 18260697
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Predicting criteria continuous concentrations of 34 metals or metalloids by use of quantitative ion character-activity relationships-species sensitivity distributions (QICAR-SSD) model.
    Mu Y; Wu F; Chen C; Liu Y; Zhao X; Haiqing Liao ; Giesy JP
    Environ Pollut; 2014 May; 188():50-5. PubMed ID: 24553246
    [TBL] [Abstract][Full Text] [Related]  

  • 59. A biotic ligand model predicting acute copper toxicity for barley (Hordeum vulgare): influence of calcium, magnesium, sodium, potassium and pH.
    Wang X; Hua L; Ma Y
    Chemosphere; 2012 Sep; 89(1):89-95. PubMed ID: 22572167
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Development and validation of abiotic ligand model for nickel toxicity to wheat (Triticum aestivum).
    Jiang Y; Gu X; Zhu B; Gu C
    J Environ Sci (China); 2017 Dec; 62():22-30. PubMed ID: 29289288
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.