These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
266 related articles for article (PubMed ID: 30954085)
1. Argon plasma modified nanocomposite polyurethane scaffolds provide an alternative strategy for cartilage tissue engineering. Griffin M; Kalaskar D; Butler P J Nanobiotechnology; 2019 Apr; 17(1):51. PubMed ID: 30954085 [TBL] [Abstract][Full Text] [Related]
2. Argon plasma modification promotes adipose derived stem cells osteogenic and chondrogenic differentiation on nanocomposite polyurethane scaffolds; implications for skeletal tissue engineering. Griffin MF; Ibrahim A; Seifalian AM; Butler PEM; Kalaskar DM; Ferretti P Mater Sci Eng C Mater Biol Appl; 2019 Dec; 105():110085. PubMed ID: 31546386 [TBL] [Abstract][Full Text] [Related]
3. Argon plasma surface modification promotes the therapeutic angiogenesis and tissue formation of tissue-engineered scaffolds in vivo by adipose-derived stem cells. Griffin MF; Naderi N; Kalaskar DM; Seifalian AM; Butler PE Stem Cell Res Ther; 2019 Mar; 10(1):110. PubMed ID: 30922398 [TBL] [Abstract][Full Text] [Related]
4. Argon plasma improves the tissue integration and angiogenesis of subcutaneous implants by modifying surface chemistry and topography. Griffin M; Palgrave R; Baldovino-Medrano VG; Butler PE; Kalaskar DM Int J Nanomedicine; 2018; 13():6123-6141. PubMed ID: 30349241 [TBL] [Abstract][Full Text] [Related]
5. Enhancing tissue integration and angiogenesis of a novel nanocomposite polymer using plasma surface polymerisation, an in vitro and in vivo study. Griffin MF; Palgrave RG; Seifalian AM; Butler PE; Kalaskar DM Biomater Sci; 2016 Jan; 4(1):145-58. PubMed ID: 26474453 [TBL] [Abstract][Full Text] [Related]
6. A Biodesigned Nanocomposite Biomaterial for Auricular Cartilage Reconstruction. Nayyer L; Jell G; Esmaeili A; Birchall M; Seifalian AM Adv Healthc Mater; 2016 May; 5(10):1203-12. PubMed ID: 26992039 [TBL] [Abstract][Full Text] [Related]
7. Platelet-rich plasma gel composited with nondegradable porous polyurethane scaffolds as a potential auricular cartilage alternative. Wang Z; Qin H; Feng Z; Zhao Y J Biomater Appl; 2016 Feb; 30(7):889-99. PubMed ID: 26359295 [TBL] [Abstract][Full Text] [Related]
8. Design and development of nanocomposite scaffolds for auricular reconstruction. Nayyer L; Birchall M; Seifalian AM; Jell G Nanomedicine; 2014 Jan; 10(1):235-46. PubMed ID: 23792331 [TBL] [Abstract][Full Text] [Related]
9. Conditions for seeding and promoting neo-auricular cartilage formation in a fibrous collagen scaffold. Zhao X; Bichara DA; Zhou L; Kulig KM; Tseng A; Bowley CM; Vacanti JP; Pomerantseva I; Sundback CA; Randolph MA J Craniomaxillofac Surg; 2015 Apr; 43(3):382-9. PubMed ID: 25600627 [TBL] [Abstract][Full Text] [Related]
10. Biodegradable water-based polyurethane scaffolds with a sequential release function for cell-free cartilage tissue engineering. Wen YT; Dai NT; Hsu SH Acta Biomater; 2019 Apr; 88():301-313. PubMed ID: 30825604 [TBL] [Abstract][Full Text] [Related]
11. A new nanocomposite scaffold based on polyurethane and clay nanoplates for osteogenic differentiation of human mesenchymal stem cells in vitro. Norouz F; Halabian R; Salimi A; Ghollasi M Mater Sci Eng C Mater Biol Appl; 2019 Oct; 103():109857. PubMed ID: 31349533 [TBL] [Abstract][Full Text] [Related]
13. Preparation, characterization and blood compatibility assessment of a novel electrospun nanocomposite comprising polyurethane and ayurvedic-indhulekha oil for tissue engineering applications. Ayyar M; Mani MP; Jaganathan SK; Rathanasamy R Biomed Tech (Berl); 2018 Jun; 63(3):245-253. PubMed ID: 28678733 [TBL] [Abstract][Full Text] [Related]
14. Farnesol-modified biodegradable polyurethanes for cartilage tissue engineering. Eglin D; Grad S; Gogolewski S; Alini M J Biomed Mater Res A; 2010 Jan; 92(1):393-408. PubMed ID: 19191318 [TBL] [Abstract][Full Text] [Related]
15. Composite elastomeric polyurethane scaffolds incorporating small intestinal submucosa for soft tissue engineering. Da L; Gong M; Chen A; Zhang Y; Huang Y; Guo Z; Li S; Li-Ling J; Zhang L; Xie H Acta Biomater; 2017 Sep; 59():45-57. PubMed ID: 28528117 [TBL] [Abstract][Full Text] [Related]
16. A Novel Biodegradable Polyurethane Matrix for Auricular Cartilage Repair: An In Vitro and In Vivo Study. Iyer K; Dearman BL; Wagstaff MJ; Greenwood JE J Burn Care Res; 2016; 37(4):e353-64. PubMed ID: 26284639 [TBL] [Abstract][Full Text] [Related]
17. Fabrication and characterization of 3D-printed elastic auricular scaffolds: A pilot study. Kim HY; Jung SY; Lee SJ; Lee HJ; Truong MD; Kim HS Laryngoscope; 2019 Feb; 129(2):351-357. PubMed ID: 30229920 [TBL] [Abstract][Full Text] [Related]