BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

215 related articles for article (PubMed ID: 30954212)

  • 1. Subdiffusive Dynamics Lead to Depleted Particle Densities near Cellular Borders.
    Holmes WR
    Biophys J; 2019 Apr; 116(8):1538-1546. PubMed ID: 30954212
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Meaningful interpretation of subdiffusive measurements in living cells (crowded environment) by fluorescence fluctuation microscopy.
    Baumann G; Place RF; Földes-Papp Z
    Curr Pharm Biotechnol; 2010 Aug; 11(5):527-43. PubMed ID: 20553227
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Influence of molecular motors on the motion of particles in viscoelastic media.
    Bouzat S
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Jun; 89(6):062707. PubMed ID: 25019814
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Perfect anomalous transport of subdiffusive cargos by molecular motors in viscoelastic cytosol.
    Goychuk I
    Biosystems; 2019 Mar; 177():56-65. PubMed ID: 30419266
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fractional Brownian motion and motion governed by the fractional Langevin equation in confined geometries.
    Jeon JH; Metzler R
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Feb; 81(2 Pt 1):021103. PubMed ID: 20365526
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Subdiffusive rocking ratchets in viscoelastic media: transport optimization and thermodynamic efficiency in overdamped regime.
    Kharchenko VO; Goychuk I
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 May; 87(5):052119. PubMed ID: 23767499
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Disentangling Random Motion and Flow in a Complex Medium.
    Koslover EF; Chan CK; Theriot JA
    Biophys J; 2016 Feb; 110(3):700-709. PubMed ID: 26840734
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cage effect for the velocity correlation functions of a Brownian particle in viscoelastic shear flows.
    Mankin R; Laas K; Lumi N; Rekker A
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Oct; 90(4):042127. PubMed ID: 25375458
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Subdiffusive motion of a polymer composed of subdiffusive monomers.
    Weber SC; Theriot JA; Spakowitz AJ
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Jul; 82(1 Pt 1):011913. PubMed ID: 20866654
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Time series analysis of particle tracking data for molecular motion on the cell membrane.
    Ying W; Huerta G; Steinberg S; Zúñiga M
    Bull Math Biol; 2009 Nov; 71(8):1967-2024. PubMed ID: 19657701
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nonequilibrium diffusion of active particles bound to a semiflexible polymer network: Simulations and fractional Langevin equation.
    Han HT; Joo S; Sakaue T; Jeon JH
    J Chem Phys; 2023 Jul; 159(2):. PubMed ID: 37428046
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Anomalous diffusion of single particles in cytoplasm.
    Regner BM; Vučinić D; Domnisoru C; Bartol TM; Hetzer MW; Tartakovsky DM; Sejnowski TJ
    Biophys J; 2013 Apr; 104(8):1652-60. PubMed ID: 23601312
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ergodicity convergence test suggests telomere motion obeys fractional dynamics.
    Kepten E; Bronshtein I; Garini Y
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Apr; 83(4 Pt 1):041919. PubMed ID: 21599212
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Brownian motion near an elastic cell membrane: A theoretical study.
    Daddi-Moussa-Ider A; Gekle S
    Eur Phys J E Soft Matter; 2018 Feb; 41(2):19. PubMed ID: 29404712
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Single-particle tracking data reveal anticorrelated fractional Brownian motion in crowded fluids.
    Weiss M
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Jul; 88(1):010101. PubMed ID: 23944389
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Viscoelasticity of model interphase chromosomes.
    Valet M; Rosa A
    J Chem Phys; 2014 Dec; 141(24):245101. PubMed ID: 25554185
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mechanisms underlying anomalous diffusion in the plasma membrane.
    Krapf D
    Curr Top Membr; 2015; 75():167-207. PubMed ID: 26015283
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Anomalous diffusion due to hindering by mobile obstacles undergoing Brownian motion or Orstein-Ulhenbeck processes.
    Berry H; Chaté H
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Feb; 89(2):022708. PubMed ID: 25353510
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Memoryless control of boundary concentrations of diffusing particles.
    Singer A; Schuss Z; Nadler B; Eisenberg RS
    Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Dec; 70(6 Pt 1):061106. PubMed ID: 15697340
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Anomalous diffusion of fatty acid vesicles driven by adhesion gradients.
    Hatta E
    J Phys Chem B; 2008 Jul; 112(29):8571-7. PubMed ID: 18582101
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.