BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

276 related articles for article (PubMed ID: 30954243)

  • 1. Streamlining the polishing step development process via physicochemical characterization of monoclonal antibody aggregates.
    Doss HR; Raman M; Knihtila R; Chennamsetty N; Wang D; Shupe A; Mussa N
    J Chromatogr A; 2019 Aug; 1598():101-112. PubMed ID: 30954243
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Keeping pace with the increasing demand for high quality drug candidates in pharmaceutical research: Development of a new two-step preparative tandem high performance chromatographic system for the purification of antibodies.
    Schmitz S; Schönfeld DL; Freitag B; Götzberger-Schad C; Fischer M; Linden L
    J Chromatogr B Analyt Technol Biomed Life Sci; 2019 Jan; 1104():18-28. PubMed ID: 30423523
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Investigation of monoclonal antibody dimers in a final formulated drug by separation techniques coupled to native mass spectrometry.
    Rouby G; Tran NT; Leblanc Y; Taverna M; Bihoreau N
    MAbs; 2020; 12(1):e1781743. PubMed ID: 32633190
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Product and process understanding to relate the effect of freezing method on glycation and aggregation of lyophilized monoclonal antibody formulations.
    Awotwe-Otoo D; Agarabi C; Read EK; Lute S; Brorson KA; Khan MA
    Int J Pharm; 2015 Jul; 490(1-2):341-50. PubMed ID: 25835267
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Analytical characterization of a monoclonal antibody therapeutic reveals a three-light chain species that is efficiently removed using hydrophobic interaction chromatography.
    Wollacott RB; Casaz PL; Morin TJ; Zhu HL; Anderson RS; Babcock GJ; Que J; Thomas WD; Ozturk SS
    MAbs; 2013; 5(6):925-35. PubMed ID: 23995619
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Preparative separation of monoclonal antibody aggregates by cation-exchange laterally-fed membrane chromatography.
    Madadkar P; Sadavarte R; Butler M; Durocher Y; Ghosh R
    J Chromatogr B Analyt Technol Biomed Life Sci; 2017 Jun; 1055-1056():158-164. PubMed ID: 28477519
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Post-Column Denaturation-Assisted Native Size-Exclusion Chromatography-Mass Spectrometry for Rapid and In-Depth Characterization of High Molecular Weight Variants in Therapeutic Monoclonal Antibodies.
    Yan Y; Xing T; Liu AP; Zhang Z; Wang S; Li N
    J Am Soc Mass Spectrom; 2021 Dec; 32(12):2885-2894. PubMed ID: 34786946
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Protocols for the analytical characterization of therapeutic monoclonal antibodies. I - Non-denaturing chromatographic techniques.
    Goyon A; D'Atri V; Bobaly B; Wagner-Rousset E; Beck A; Fekete S; Guillarme D
    J Chromatogr B Analyt Technol Biomed Life Sci; 2017 Jul; 1058():73-84. PubMed ID: 28549280
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Caprylic acid-induced impurity precipitation from protein A capture column elution pool to enable a two-chromatography-step process for monoclonal antibody purification.
    Zheng J; Wang L; Twarowska B; Laino S; Sparks C; Smith T; Russell R; Wang M
    Biotechnol Prog; 2015; 31(6):1515-25. PubMed ID: 26280674
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Exploration of overloaded cation exchange chromatography for monoclonal antibody purification.
    Liu HF; McCooey B; Duarte T; Myers DE; Hudson T; Amanullah A; van Reis R; Kelley BD
    J Chromatogr A; 2011 Sep; 1218(39):6943-52. PubMed ID: 21871630
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Development of a high throughput protein a well-plate purification method for monoclonal antibodies.
    Hopp J; Pritchett R; Darlucio M; Ma J; Chou JH
    Biotechnol Prog; 2009; 25(5):1427-32. PubMed ID: 19637390
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Optimization of a platform process operating space for a monoclonal antibody susceptible to reversible and irreversible aggregation using a solution stability screening approach.
    Man A; Luo H; Levitskaya SV; Macapagal N; Newell KJ
    J Chromatogr A; 2019 Jul; 1597():100-108. PubMed ID: 30922716
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hyphenation of size exclusion chromatography to native ion mobility mass spectrometry for the analytical characterization of therapeutic antibodies and related products.
    Ehkirch A; Hernandez-Alba O; Colas O; Beck A; Guillarme D; Cianférani S
    J Chromatogr B Analyt Technol Biomed Life Sci; 2018 Jun; 1086():176-183. PubMed ID: 29684909
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Accelerated development of a SEC-HPLC procedure for purity analysis of monoclonal antibodies using design of experiments.
    Cernosek T; Jain N; Dalphin M; Behrens S; Wunderli P
    J Chromatogr B Analyt Technol Biomed Life Sci; 2024 Mar; 1235():124037. PubMed ID: 38335765
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Improved Comparative Signature Diagrams to Evaluate Similarity of Storage Stability Profiles of Different IgG1 mAbs.
    Kim JH; Joshi SB; Esfandiary R; Iyer V; Bishop SM; Volkin DB; Middaugh CR
    J Pharm Sci; 2016 Mar; 105(3):1028-35. PubMed ID: 26886311
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Evaluation of automated Wes system as an analytical and characterization tool to support monoclonal antibody drug product development.
    Wang J; Valdez A; Chen Y
    J Pharm Biomed Anal; 2017 May; 139():263-268. PubMed ID: 28069351
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Multi-angle light scattering as a process analytical technology measuring real-time molecular weight for downstream process control.
    Patel BA; Gospodarek A; Larkin M; Kenrick SA; Haverick MA; Tugcu N; Brower MA; Richardson DD
    MAbs; 2018 Oct; 10(7):945-950. PubMed ID: 30130442
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Purification of Human Monoclonal Antibodies and Their Fragments.
    Ulmer N; Vogg S; Müller-Späth T; Morbidelli M
    Methods Mol Biol; 2019; 1904():163-188. PubMed ID: 30539470
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The impact of forced degradation conditions on mAb dimer formation and subsequent influence on aggregation propensity.
    Knight MJ; Floret L; Patel N; O'Hara J; Rodriguez E
    MAbs; 2022; 14(1):2127172. PubMed ID: 36198003
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Rational design of viscosity reducing mutants of a monoclonal antibody: hydrophobic versus electrostatic inter-molecular interactions.
    Nichols P; Li L; Kumar S; Buck PM; Singh SK; Goswami S; Balthazor B; Conley TR; Sek D; Allen MJ
    MAbs; 2015; 7(1):212-30. PubMed ID: 25559441
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.