BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

157 related articles for article (PubMed ID: 30954828)

  • 1. P-recovery in a pilot-scale struvite crystallisation reactor for source separated urine systems using seawater and magnesium chloride as magnesium sources.
    Aguado D; Barat R; Bouzas A; Seco A; Ferrer J
    Sci Total Environ; 2019 Jul; 672():88-96. PubMed ID: 30954828
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Characterization of induced struvite formation from source-separated urine using seawater and brine as magnesium sources.
    Liu B; Giannis A; Zhang J; Chang VW; Wang JY
    Chemosphere; 2013 Nov; 93(11):2738-47. PubMed ID: 24134888
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Development of phosphorus recovery reactor for enlargement of struvite crystals using seawater as the magnesium source.
    Wongphudphad P; Kemacheevakul P
    Water Sci Technol; 2019 Apr; 79(7):1376-1386. PubMed ID: 31123237
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Crystallization kinetics and growth of struvite crystals by seawater versus magnesium chloride as magnesium source: towards enhancing sustainability and economics of struvite crystallization.
    Shaddel S; Grini T; Andreassen JP; Østerhus SW; Ucar S
    Chemosphere; 2020 Oct; 256():126968. PubMed ID: 32428738
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Struvite crystallization versus amorphous magnesium and calcium phosphate precipitation during the treatment of a saline industrial wastewater.
    Crutchik D; Garrido JM
    Water Sci Technol; 2011; 64(12):2460-7. PubMed ID: 22170842
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Phosphorus recovery from urine with different magnesium resources in an air-agitated reactor.
    Liu X; Hu Z; Mu J; Zang H; Liu L
    Environ Technol; 2014; 35(21-24):2781-7. PubMed ID: 25176481
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Alleviating Na
    Huang H; Zhang D; Wang W; Li B; Zhao N; Li J; Dai J
    Sci Total Environ; 2019 Mar; 655():211-219. PubMed ID: 30471589
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fractionating magnesium ion from seawater for struvite recovery using electrodialysis with monovalent selective membranes.
    Ye ZL; Ghyselbrecht K; Monballiu A; Rottiers T; Sansen B; Pinoy L; Meesschaert B
    Chemosphere; 2018 Nov; 210():867-876. PubMed ID: 30208546
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Wood ash as a magnesium source for phosphorus recovery from source-separated urine.
    Sakthivel SR; Tilley E; Udert KM
    Sci Total Environ; 2012 Mar; 419():68-75. PubMed ID: 22297249
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Struvite crystallization by using raw seawater: Improving economics and environmental footprint while maintaining phosphorus recovery and product quality.
    Shaddel S; Grini T; Ucar S; Azrague K; Andreassen JP; Østerhus SW
    Water Res; 2020 Apr; 173():115572. PubMed ID: 32062222
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Impact of reactor operation on success of struvite precipitation from synthetic liquors.
    Le Corre KS; Valsami-Jones E; Hobbs P; Parsons SA
    Environ Technol; 2007 Nov; 28(11):1245-56. PubMed ID: 18290534
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Three years of operation of North America's first nutrient recovery facility.
    Cullen N; Baur R; Schauer P
    Water Sci Technol; 2013; 68(4):763-8. PubMed ID: 23985504
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Low-cost struvite production using source-separated urine in Nepal.
    Etter B; Tilley E; Khadka R; Udert KM
    Water Res; 2011 Jan; 45(2):852-62. PubMed ID: 20980038
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An exploratory study on seawater-catalysed urine phosphorus recovery (SUPR).
    Dai J; Tang WT; Zheng YS; Mackey HR; Chui HK; van Loosdrecht MCM; Chen GH
    Water Res; 2014 Dec; 66():75-84. PubMed ID: 25189478
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Use of a seeder reactor to manage crystal growth in the fluidized bed reactor for phosphorus recovery.
    Shimamura K; Ishikawa H; Tanaka T; Hirasawa I
    Water Environ Res; 2007 Apr; 79(4):406-13. PubMed ID: 17489275
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Rift Valley Lake as a potential magnesium source to recover phosphorus from urine.
    Guadie A; Belay A; Liu W; Yesigat A; Hao X; Wang A
    Environ Res; 2020 May; 184():109363. PubMed ID: 32209497
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Struvite pellet crystallization in a high-strength nitrogen and phosphorus stream.
    Li Y; Liu M; Yuan Z; Zou J
    Water Sci Technol; 2013; 68(6):1300-5. PubMed ID: 24056427
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Occurrence of micro-organic pollutants on phosphorus recovery from urine.
    Kemacheevakul P; Otani S; Matsuda T; Shimizu Y
    Water Sci Technol; 2012; 66(10):2194-201. PubMed ID: 22949251
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of saline water ionic strength on phosphorus recovery from synthetic swine wastewater.
    Zhang Z; Li B; Wicaksana F; Yu W; Young B
    J Environ Sci (China); 2022 Mar; 113():81-91. PubMed ID: 34963552
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Phosphorus recovery from high solid content liquid fraction of digestate using seawater bittern as the magnesium source.
    Pepè Sciarria T; Zangarini S; Tambone F; Trombino L; Puig S; Adani F
    Waste Manag; 2023 Jan; 155():252-259. PubMed ID: 36399852
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.