BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

157 related articles for article (PubMed ID: 30954887)

  • 1. Enzymerhodopsins: novel photoregulated catalysts for optogenetics.
    Mukherjee S; Hegemann P; Broser M
    Curr Opin Struct Biol; 2019 Aug; 57():118-126. PubMed ID: 30954887
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Molecular Properties and Optogenetic Applications of Enzymerhodopsins.
    Tsunoda SP; Sugiura M; Kandori H
    Adv Exp Med Biol; 2021; 1293():153-165. PubMed ID: 33398812
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The inner mechanics of rhodopsin guanylyl cyclase during cGMP-formation revealed by real-time FTIR spectroscopy.
    Fischer P; Mukherjee S; Schiewer E; Broser M; Bartl F; Hegemann P
    Elife; 2021 Oct; 10():. PubMed ID: 34665128
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Structure and monomer/dimer equilibrium for the guanylyl cyclase domain of the optogenetics protein RhoGC.
    Kumar RP; Morehouse BR; Fofana J; Trieu MM; Zhou DH; Lorenz MO; Oprian DD
    J Biol Chem; 2017 Dec; 292(52):21578-21589. PubMed ID: 29118188
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The rhodopsin-guanylyl cyclase of the aquatic fungus Blastocladiella emersonii enables fast optical control of cGMP signaling.
    Scheib U; Stehfest K; Gee CE; Körschen HG; Fudim R; Oertner TG; Hegemann P
    Sci Signal; 2015 Aug; 8(389):rs8. PubMed ID: 26268609
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Novel Modular Rhodopsins from Green Algae Hold Great Potential for Cellular Optogenetic Modulation Across the Biological Model Systems.
    Awasthi M; Sushmita K; Kaushik MS; Ranjan P; Kateriya S
    Life (Basel); 2020 Oct; 10(11):. PubMed ID: 33126644
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Expression, purification, and spectral tuning of RhoGC, a retinylidene/guanylyl cyclase fusion protein and optogenetics tool from the aquatic fungus
    Trieu MM; Devine EL; Lamarche LB; Ammerman AE; Greco JA; Birge RR; Theobald DL; Oprian DD
    J Biol Chem; 2017 Jun; 292(25):10379-10389. PubMed ID: 28473465
    [TBL] [Abstract][Full Text] [Related]  

  • 8. In Vivo and In Vitro Characterization of Cyclase and Phosphodiesterase Rhodopsins.
    Tian Y; Gao S; Nagel G
    Methods Mol Biol; 2022; 2501():325-338. PubMed ID: 35857236
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Microbial Rhodopsin Optogenetic Tools: Application for Analyses of Synaptic Transmission and of Neuronal Network Activity in Behavior.
    Bergs A; Henss T; Glock C; Nagpal J; Gottschalk A
    Methods Mol Biol; 2022; 2468():89-115. PubMed ID: 35320562
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Absorption and Emission Spectroscopic Investigation of Thermal Dynamics and Photo-Dynamics of the Rhodopsin Domain of the Rhodopsin-Guanylyl Cyclase from the Nematophagous Fungus Catenaria anguillulae.
    Penzkofer A; Scheib U; Stehfest K; Hegemann P
    Int J Mol Sci; 2017 Oct; 18(10):. PubMed ID: 28981475
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A rhodopsin-guanylyl cyclase gene fusion functions in visual perception in a fungus.
    Avelar GM; Schumacher RI; Zaini PA; Leonard G; Richards TA; Gomes SL
    Curr Biol; 2014 Jun; 24(11):1234-40. PubMed ID: 24835457
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Optogenetic manipulation of cGMP in cells and animals by the tightly light-regulated guanylyl-cyclase opsin CyclOp.
    Gao S; Nagpal J; Schneider MW; Kozjak-Pavlovic V; Nagel G; Gottschalk A
    Nat Commun; 2015 Sep; 6():8046. PubMed ID: 26345128
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Purification and Characterization of RhoPDE, a Retinylidene/Phosphodiesterase Fusion Protein and Potential Optogenetic Tool from the Choanoflagellate Salpingoeca rosetta.
    Lamarche LB; Kumar RP; Trieu MM; Devine EL; Cohen-Abeles LE; Theobald DL; Oprian DD
    Biochemistry; 2017 Oct; 56(43):5812-5822. PubMed ID: 28976747
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Rhodopsin-Based Optogenetics: Basics and Applications.
    Alekseev A; Gordeliy V; Bamberg E
    Methods Mol Biol; 2022; 2501():71-100. PubMed ID: 35857223
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The light-driven sodium ion pump: A new player in rhodopsin research.
    Kato HE; Inoue K; Kandori H; Nureki O
    Bioessays; 2016 Dec; 38(12):1274-1282. PubMed ID: 27859420
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Rhodopsin-cyclases for photocontrol of cGMP/cAMP and 2.3 Å structure of the adenylyl cyclase domain.
    Scheib U; Broser M; Constantin OM; Yang S; Gao S; Mukherjee S; Stehfest K; Nagel G; Gee CE; Hegemann P
    Nat Commun; 2018 May; 9(1):2046. PubMed ID: 29799525
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Characterization and Modification of Light-Sensitive Phosphodiesterases from Choanoflagellates.
    Tian Y; Yang S; Nagel G; Gao S
    Biomolecules; 2022 Jan; 12(1):. PubMed ID: 35053236
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Advances and prospects of rhodopsin-based optogenetics in plant research.
    Zhou Y; Ding M; Nagel G; Konrad KR; Gao S
    Plant Physiol; 2021 Oct; 187(2):572-589. PubMed ID: 35237820
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Structural insights into the mechanism of rhodopsin phosphodiesterase.
    Ikuta T; Shihoya W; Sugiura M; Yoshida K; Watari M; Tokano T; Yamashita K; Katayama K; Tsunoda SP; Uchihashi T; Kandori H; Nureki O
    Nat Commun; 2020 Nov; 11(1):5605. PubMed ID: 33154353
    [TBL] [Abstract][Full Text] [Related]  

  • 20. RhoMax: Computational Prediction of Rhodopsin Absorption Maxima Using Geometric Deep Learning.
    Sela M; Church JR; Schapiro I; Schneidman-Duhovny D
    J Chem Inf Model; 2024 Jun; 64(12):4630-4639. PubMed ID: 38829021
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.