These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

110 related articles for article (PubMed ID: 309549)

  • 21. [Isolation and purification of bacterial luciferase from Photobacterium fischeri for analytical purposes].
    Shumikhin VN; Danilov VS; Malkov IuA; Egorov NS
    Biokhimiia; 1980 Sep; 45(9):1576-81. PubMed ID: 7248358
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Affinity labeling of the aldehyde site of bacterial luciferase.
    Fried A; Tu SC
    J Biol Chem; 1984 Sep; 259(17):10754-9. PubMed ID: 6547953
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Bioluminescence emission of bacterial luciferase with 1-deaza-FMN. Evidence for the noninvolvement of N(1)-protonated flavin species as emitters.
    Kurfürst M; Macheroux P; Ghisla S; Hastings JW
    Eur J Biochem; 1989 May; 181(2):453-7. PubMed ID: 2714296
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Isolation and properties of bacterial luciferase intermediates containing different oxygenated flavins.
    Tu SC
    J Biol Chem; 1982 Apr; 257(7):3719-25. PubMed ID: 7061505
    [No Abstract]   [Full Text] [Related]  

  • 25. Covalent structure of subunits of bacterial luciferase: NH2-terminal sequence demonstrates subunit homology.
    Baldwin TO; Ziegler MM; Powers DA
    Proc Natl Acad Sci U S A; 1979 Oct; 76(10):4887-9. PubMed ID: 315557
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Bacterial luciferase: demonstration of a catalytically competent altered conformational state following a single turnover.
    AbouKhair NK; Ziegler MM; Baldwin TO
    Biochemistry; 1985 Jul; 24(15):3942-7. PubMed ID: 4052376
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Dynamic fluorescence properties of bacterial luciferase intermediates.
    Lee J; O'Kane DJ; Gibson BG
    Biochemistry; 1988 Jun; 27(13):4862-70. PubMed ID: 3167018
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Tryptophan 250 on the alpha subunit plays an important role in flavin and aldehyde binding to bacterial luciferase. Effects of W-->Y mutations on catalytic function.
    Li Z; Meighen EA
    Biochemistry; 1995 Nov; 34(46):15084-90. PubMed ID: 7578121
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Differential effects of 8-anilino-1-naphthalenesulfonate upon binding of oxidized and reduced flavines by bacterial luciferase.
    Tu S; Hastings JW
    Biochemistry; 1975 Sep; 14(19):4310-6. PubMed ID: 810158
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Vibrio harveyi flavin reductase--luciferase fusion protein mimics a single-component bifunctional monooxygenase.
    Jawanda N; Ahmed K; Tu SC
    Biochemistry; 2008 Jan; 47(1):368-77. PubMed ID: 18067321
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Biosynthesis of aliphatic aldehydes for the bacterial bioluminescent reaction: stimulation by ATP and NADPH.
    Meighen EA
    Biochem Biophys Res Commun; 1979 Apr; 87(4):1080-6. PubMed ID: 223549
    [No Abstract]   [Full Text] [Related]  

  • 32. Studies on luciferase from Photobacterium phosphoreum. XI. Interaction of 8-substituted FMNH2 with luciferase.
    Watanabe T; Matsui K; Kasai S; Nakamura T
    J Biochem; 1978 Dec; 84(6):1441-6. PubMed ID: 738995
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Elicitation of an oxidase activity in bacterial luciferase by site-directed mutation of a noncatalytic residue.
    Xi L; Cho KW; Herndon ME; Tu SC
    J Biol Chem; 1990 Mar; 265(8):4200-3. PubMed ID: 2307667
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Interaction of bacterial luciferase with 8-substituted flavin mononucleotide derivatives.
    Francisco WA; Abu-Soud HM; Topgi R; Baldwin TO; Raushel FM
    J Biol Chem; 1996 Jan; 271(1):104-10. PubMed ID: 8550543
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Mechanism of aldehyde inhibition of Vibrio harveyi luciferase. Identification of two aldehyde sites and relationship between aldehyde and flavin binding.
    Lei B; Cho KW; Tu SC
    J Biol Chem; 1994 Feb; 269(8):5612-8. PubMed ID: 8119897
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Bacterial luciferase requires one reduced flavin for light emission.
    Becvar JE; Hastings JW
    Proc Natl Acad Sci U S A; 1975 Sep; 72(9):3374-6. PubMed ID: 1059124
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Modification of the reactive sulfhydryl of bacterial luciferase with spin-labeled maleimides.
    Merritt MV; Baldwin TO
    Arch Biochem Biophys; 1980 Jul; 202(2):499-506. PubMed ID: 6257169
    [No Abstract]   [Full Text] [Related]  

  • 38. Studies on the NADH and NADPH: riboflavin 5'-phosphate (FMN) oxidoreductases from Beneckea harveyi: characterization of the FMN binding sites.
    Nefsky B; DeLuca M
    Arch Biochem Biophys; 1982 Jun; 216(1):10-6. PubMed ID: 6980629
    [No Abstract]   [Full Text] [Related]  

  • 39. Effects of mutations of the alpha His45 residue of Vibrio harveyi luciferase on the yield and reactivity of the flavin peroxide intermediate.
    Li H; Ortego BC; Maillard KI; Willson RC; Tu SC
    Biochemistry; 1999 Apr; 38(14):4409-15. PubMed ID: 10194361
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Activity coupling and complex formation between bacterial luciferase and flavin reductases.
    Tu SC
    Photochem Photobiol Sci; 2008 Feb; 7(2):183-8. PubMed ID: 18264585
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.