These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
110 related articles for article (PubMed ID: 309549)
41. [FMN-reductase from Escherichia coli and its effect on the activity of luciferase from marine bacterium Vibrio fischeri]. Mazhul' MM; Zavil'gel'skiĭ GB; Zarubina AP; Iudina ; Danilov VS Mikrobiologiia; 1999; 68(2):149-54. PubMed ID: 10420395 [TBL] [Abstract][Full Text] [Related]
42. Site-directed mutagenesis of bacterial luciferase: analysis of the 'essential' thiol. Baldwin TO; Chen LH; Chlumsky LJ; Devine JH; Ziegler MM J Biolumin Chemilumin; 1989 Jul; 4(1):40-8. PubMed ID: 2678923 [TBL] [Abstract][Full Text] [Related]
43. Differential transfers of reduced flavin cofactor and product by bacterial flavin reductase to luciferase. Jeffers CE; Tu SC Biochemistry; 2001 Feb; 40(6):1749-54. PubMed ID: 11327836 [TBL] [Abstract][Full Text] [Related]
44. The binding and spectral alterations of oxidized flavin mononucleotide by bacterial luciferase. Baldwin TO Biochem Biophys Res Commun; 1974 Apr; 57(4):1000-5. PubMed ID: 4830741 [No Abstract] [Full Text] [Related]
45. The enthalpy of oxidation of flavin mononucleotide. Temperature dependence of in vitro bacterial luciferase bioluminescence. Mangold A; Langerman N Arch Biochem Biophys; 1975 Jul; 169(1):126-33. PubMed ID: 808172 [No Abstract] [Full Text] [Related]
46. Revisiting the Origin of Bacterial Bioluminescence: QM/MM Study on Oxygenation Reaction of Reduced Flavin in Protein. Luo Y; Liu YJ Chemphyschem; 2019 Feb; 20(3):405-409. PubMed ID: 30417568 [TBL] [Abstract][Full Text] [Related]
47. Studies on luciferase from Photobacterium phosphoreum. VI. Stoichiometry and mode of binding of FMNH2 and O2 to stripped luciferase. Watanabe T; Tomita G; Nakamura T J Biochem; 1974 Jun; 75(6):1249-55. PubMed ID: 4426891 [No Abstract] [Full Text] [Related]
48. Studies of the control of luminescence in Beneckea harveyi: properties of the NADH and NADPH:FMN oxidoreductases. Jablonski E; DeLuca M Biochemistry; 1978 Feb; 17(4):672-8. PubMed ID: 23827 [TBL] [Abstract][Full Text] [Related]
49. Photoexcited bacterial luminescence. Spectral properties and mechanistic implication of a reduced flavine-like prosthetic group associated with photoexcitable luciferase. Tu SC; Hastings JW Biochemistry; 1975 May; 14(9):1975-80. PubMed ID: 804918 [TBL] [Abstract][Full Text] [Related]
50. Functional consequences of site-directed mutation of conserved histidyl residues of the bacterial luciferase alpha subunit. Xin X; Xi L; Tu SC Biochemistry; 1991 Nov; 30(47):11255-62. PubMed ID: 1958663 [TBL] [Abstract][Full Text] [Related]
51. The effects of phosphate on the structure and stability of the luciferases from Beneckea harveyi, Photobacterium fischeri, and Photobacterium phosphoreum. Holzman TF; Baldwin TO Biochem Biophys Res Commun; 1980 Jun; 94(4):1199-206. PubMed ID: 6967319 [No Abstract] [Full Text] [Related]
52. Oxygen dependent and independent steps in luciferase-FMNH2 oxidation. Presswood R; Hastings JW Biochem Biophys Res Commun; 1978 Jun; 82(3):990-6. PubMed ID: 697779 [No Abstract] [Full Text] [Related]
53. The transfer of reduced flavin mononucleotide from LuxG oxidoreductase to luciferase occurs via free diffusion. Tinikul R; Pitsawong W; Sucharitakul J; Nijvipakul S; Ballou DP; Chaiyen P Biochemistry; 2013 Oct; 52(39):6834-43. PubMed ID: 24004065 [TBL] [Abstract][Full Text] [Related]
54. Structure of bacterial luciferase beta 2 homodimer: implications for flavin binding. Tanner JJ; Miller MD; Wilson KS; Tu SC; Krause KL Biochemistry; 1997 Jan; 36(4):665-72. PubMed ID: 9020763 [TBL] [Abstract][Full Text] [Related]
55. Stopped-flow kinetic analysis of the bacterial luciferase reaction. Abu-Soud H; Mullins LS; Baldwin TO; Raushel FM Biochemistry; 1992 Apr; 31(15):3807-13. PubMed ID: 1567836 [TBL] [Abstract][Full Text] [Related]
56. Relationship between the conserved alpha subunit arginine 107 and effects of phosphate on the activity and stability of Vibrio harveyi luciferase. Moore C; Lei B; Tu SC Arch Biochem Biophys; 1999 Oct; 370(1):45-50. PubMed ID: 10496975 [TBL] [Abstract][Full Text] [Related]
57. A new reducing agent of flavins and its application to the assay of bacterial luciferase. Lei BF; Becvar JE Photochem Photobiol; 1991 Sep; 54(3):473-6. PubMed ID: 1784643 [TBL] [Abstract][Full Text] [Related]
58. Three-dimensional structure of bacterial luciferase from Vibrio harveyi at 2.4 A resolution. Fisher AJ; Raushel FM; Baldwin TO; Rayment I Biochemistry; 1995 May; 34(20):6581-6. PubMed ID: 7756289 [TBL] [Abstract][Full Text] [Related]
59. Purification of bacterial luciferase by high-performance liquid chromatography. O'Kane DJ; Ahmad M; Matheson IB; Lee J Methods Enzymol; 1986; 133():109-28. PubMed ID: 3821531 [No Abstract] [Full Text] [Related]