BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

196 related articles for article (PubMed ID: 30954916)

  • 1. MMP-9 selectively cleaves non-D-banded material on collagen fibrils with discrete plasticity damage in mechanically-overloaded tendon.
    Baldwin SJ; Kreplak L; Lee JM
    J Mech Behav Biomed Mater; 2019 Jul; 95():67-75. PubMed ID: 30954916
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Characterization via atomic force microscopy of discrete plasticity in collagen fibrils from mechanically overloaded tendons: Nano-scale structural changes mimic rope failure.
    Baldwin SJ; Kreplak L; Lee JM
    J Mech Behav Biomed Mater; 2016 Jul; 60():356-366. PubMed ID: 26925699
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Macrophage-like U937 cells recognize collagen fibrils with strain-induced discrete plasticity damage.
    Veres SP; Brennan-Pierce EP; Lee JM
    J Biomed Mater Res A; 2015 Jan; 103(1):397-408. PubMed ID: 24616426
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Advanced glycation end-product cross-linking inhibits biomechanical plasticity and characteristic failure morphology of native tendon.
    Lee JM; Veres SP
    J Appl Physiol (1985); 2019 Apr; 126(4):832-841. PubMed ID: 30653412
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A new longitudinal variation in the structure of collagen fibrils and its relationship to locations of mechanical damage susceptibility.
    Baldwin SJ; Sampson J; Peacock CJ; Martin ML; Veres SP; Lee JM; Kreplak L
    J Mech Behav Biomed Mater; 2020 Oct; 110():103849. PubMed ID: 32501220
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Repeated subrupture overload causes progression of nanoscaled discrete plasticity damage in tendon collagen fibrils.
    Veres SP; Harrison JM; Lee JM
    J Orthop Res; 2013 May; 31(5):731-7. PubMed ID: 23255142
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Tendon glycosaminoglycan proteoglycan sidechains promote collagen fibril sliding-AFM observations at the nanoscale.
    Rigozzi S; Müller R; Stemmer A; Snedeker JG
    J Biomech; 2013 Feb; 46(4):813-8. PubMed ID: 23219277
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Collagen fibrils from both positional and energy-storing tendons exhibit increased amounts of denatured collagen when stretched beyond the yield point.
    Lin AH; Slater CA; Martinez CJ; Eppell SJ; Yu SM; Weiss JA
    Acta Biomater; 2023 Jan; 155():461-470. PubMed ID: 36400348
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mechanically overloading collagen fibrils uncoils collagen molecules, placing them in a stable, denatured state.
    Veres SP; Harrison JM; Lee JM
    Matrix Biol; 2014 Jan; 33():54-9. PubMed ID: 23880369
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Collagen fibrils in functionally distinct tendons have differing structural responses to tendon rupture and fatigue loading.
    Herod TW; Chambers NC; Veres SP
    Acta Biomater; 2016 Sep; 42():296-307. PubMed ID: 27321189
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Designed to fail: a novel mode of collagen fibril disruption and its relevance to tissue toughness.
    Veres SP; Lee JM
    Biophys J; 2012 Jun; 102(12):2876-84. PubMed ID: 22735538
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cross-link stabilization does not affect the response of collagen molecules, fibrils, or tendons to tensile overload.
    Veres SP; Harrison JM; Lee JM
    J Orthop Res; 2013 Dec; 31(12):1907-13. PubMed ID: 24038530
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ultrastructural response of tendon to excessive level or duration of tensile load supports that collagen fibrils are mechanically continuous.
    Hijazi KM; Singfield KL; Veres SP
    J Mech Behav Biomed Mater; 2019 Sep; 97():30-40. PubMed ID: 31085458
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Matrix metalloproteinase activities and their relationship with collagen remodelling in tendon pathology.
    Riley GP; Curry V; DeGroot J; van El B; Verzijl N; Hazleman BL; Bank RA
    Matrix Biol; 2002 Mar; 21(2):185-95. PubMed ID: 11852234
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Collagen fibril growth during chicken tendon development: matrix metalloproteinase-2 and its activation.
    Jung JC; Wang PX; Zhang G; Ezura Y; Fini ME; Birk DE
    Cell Tissue Res; 2009 Apr; 336(1):79-89. PubMed ID: 19221802
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Single collagen fibrils isolated from high stress and low stress tendons show differing susceptibility to enzymatic degradation by the interstitial collagenase matrix metalloproteinase-1 (MMP-1).
    Gsell KY; Veres SP; Kreplak L
    Matrix Biol Plus; 2023 Jun; 18():100129. PubMed ID: 36915648
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Changes in collagen fibril pattern and adhesion force with collagenase-induced injury in rat Achilles tendon observed via AFM.
    Lee GJ; Choi S; Chon J; Yoo S; Cho I; Park HK
    J Nanosci Nanotechnol; 2011 Jan; 11(1):773-7. PubMed ID: 21446543
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Diffusion of MMPs on the surface of collagen fibrils: the mobile cell surface-collagen substratum interface.
    Collier IE; Legant W; Marmer B; Lubman O; Saffarian S; Wakatsuki T; Elson E; Goldberg GI
    PLoS One; 2011; 6(9):e24029. PubMed ID: 21912660
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mechanical strain stabilizes reconstituted collagen fibrils against enzymatic degradation by mammalian collagenase matrix metalloproteinase 8 (MMP-8).
    Flynn BP; Bhole AP; Saeidi N; Liles M; Dimarzio CA; Ruberti JW
    PLoS One; 2010 Aug; 5(8):e12337. PubMed ID: 20808784
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ultrastructure of tendon rupture depends on strain rate and tendon type.
    Chambers NC; Herod TW; Veres SP
    J Orthop Res; 2018 Nov; 36(11):2842-2850. PubMed ID: 29901228
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.