BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

435 related articles for article (PubMed ID: 30954924)

  • 1. Novel strategy to improve the sensing performances of split ATP aptamer based fluorescent indicator displacement assay through enhanced molecular recognition.
    Ma Y; Geng F; Wang Y; Xu M; Shao C; Qu P; Zhang Y; Ye B
    Biosens Bioelectron; 2019 Jun; 134():36-41. PubMed ID: 30954924
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A facile label-free G-quadruplex based fluorescent aptasensor method for rapid detection of ATP.
    Liu H; Ma C; Ning F; Chen H; He H; Wang K; Wang J
    Spectrochim Acta A Mol Biomol Spectrosc; 2017 Mar; 175():164-167. PubMed ID: 28038373
    [TBL] [Abstract][Full Text] [Related]  

  • 3. G-quadruplex specific thioflavin T-based label-free fluorescence aptasensor for rapid detection of tetracycline.
    Dai Y; Zhang Y; Liao W; Wang W; Wu L
    Spectrochim Acta A Mol Biomol Spectrosc; 2020 Sep; 238():118406. PubMed ID: 32387918
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A rapid fluorometric method for determination of aflatoxin B
    Li Y; Wang J; Zhang B; He Y; Wang J; Wang S
    Mikrochim Acta; 2019 Mar; 186(4):214. PubMed ID: 30830273
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Thioflavin T behaves as an efficient fluorescent ligand for label-free ATP aptasensor.
    Wang H; Peng P; Liu S; Li T
    Anal Bioanal Chem; 2016 Nov; 408(28):7927-7934. PubMed ID: 27682839
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Label-free and rapid detection of ATP based on structure switching of aptamers.
    Ji D; Wang H; Ge J; Zhang L; Li J; Bai D; Chen J; Li Z
    Anal Biochem; 2017 Jun; 526():22-28. PubMed ID: 28315316
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comparison of turn-on and ratiometric fluorescent G-quadruplex aptasensor approaches for the detection of ATP.
    Srinivasan S; Ranganathan V; DeRosa MC; Murari BM
    Anal Bioanal Chem; 2019 Mar; 411(7):1319-1330. PubMed ID: 30612178
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Coupling strand extension/excision amplification with target recycling enables highly sensitive and aptamer-based label-free sensing of ATP in human serum.
    Xu L; Jiang B; Zhou W; Yuan R; Xiang Y
    Analyst; 2020 Jan; 145(2):434-439. PubMed ID: 31793560
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Design of a Fluorescence Turn-on and Label-free Aptasensor Using the Intrinsic Quenching Power of G-Quadruplex to AMT.
    Wang D; Geng F; Wang Y; Ma Y; Li G; Qu P; Shao C; Xu M
    Anal Sci; 2020 Aug; 36(8):965-970. PubMed ID: 32062632
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A facile label-free aptasensor for detecting ATP based on fluorescence enhancement of poly(thymine)-templated copper nanoparticles.
    Zhou SS; Zhang L; Cai QY; Dong ZZ; Geng X; Ge J; Li ZH
    Anal Bioanal Chem; 2016 Sep; 408(24):6711-7. PubMed ID: 27457102
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A nuclease-assisted label-free aptasensor for fluorescence turn-on detection of ATP based on the in situ formation of copper nanoparticles.
    Song Q; Wang R; Sun F; Chen H; Wang Z; Na N; Ouyang J
    Biosens Bioelectron; 2017 Jan; 87():760-763. PubMed ID: 27649332
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Label-Free G-Quadruplex Aptamer Fluorescence Assay for Ochratoxin A Using a Thioflavin T Probe.
    Wu K; Ma C; Zhao H; He H; Chen H
    Toxins (Basel); 2018 May; 10(5):. PubMed ID: 29757205
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Quantification of ATP in cell by fluorescence spectroscopy based on generalized ratio quantitative analysis model.
    Chen Y; Tang Y; Wang H
    Spectrochim Acta A Mol Biomol Spectrosc; 2021 Dec; 263():120170. PubMed ID: 34273897
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A colorimetric ATP assay based on the use of a magnesium(II)-dependent DNAzyme.
    Zhu S; Wang X; Jing C; Yin Y; Zhou N
    Mikrochim Acta; 2019 Feb; 186(3):176. PubMed ID: 30771011
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A Label-Free Fluorescence Aptasensor Based on G-Quadruplex/Thioflavin T Complex for the Detection of Trypsin.
    Gu P; Lu Y; Li S; Ma C
    Molecules; 2022 Sep; 27(18):. PubMed ID: 36144829
    [TBL] [Abstract][Full Text] [Related]  

  • 16. An exonuclease I-based label-free fluorometric aptasensor for adenosine triphosphate (ATP) detection with a wide concentration range.
    Wei Y; Chen Y; Li H; Shuang S; Dong C; Wang G
    Biosens Bioelectron; 2015 Jan; 63():311-316. PubMed ID: 25113049
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A cost-effective fluorescence biosensor for cocaine based on a "mix-and-detect" strategy.
    Wu Z; Zhou H; Han Q; Lin X; Han D; Li X
    Analyst; 2020 Jul; 145(13):4664-4670. PubMed ID: 32458835
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Molecular Docking Insight into the Label-Free Fluorescence Aptasensor for Ochratoxin A Detection.
    Ye H; Wang M; Yu X; Ma P; Zhu P; Zhong J; He K; Guo Y
    Molecules; 2023 Jun; 28(12):. PubMed ID: 37375396
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fusion of binary split allosteric aptasensor for the ultra-sensitive and super-rapid detection of malachite green.
    Chen X; Chen K; Du Z; Chu H; Zhu L; He X; Xu W
    J Hazard Mater; 2022 Mar; 425():127976. PubMed ID: 34883379
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Label-free fluorescence aptasensor for the detection of cadmium(II) ion based on the conformational switching of aptamer and thioflavine T.
    Liu P; He Y; Liu X; Gao X
    Anal Sci; 2024 Mar; 40(3):481-487. PubMed ID: 38182840
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 22.