BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 30954952)

  • 1. Ring1b-dependent epigenetic remodelling is an essential prerequisite for pancreatic carcinogenesis.
    Benitz S; Straub T; Mahajan UM; Mutter J; Czemmel S; Unruh T; Wingerath B; Deubler S; Fahr L; Cheng T; Nahnsen S; Bruns P; Kong B; Raulefs S; Ceyhan GO; Mayerle J; Steiger K; Esposito I; Kleeff J; Michalski CW; Regel I
    Gut; 2019 Nov; 68(11):2007-2018. PubMed ID: 30954952
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Polycomb repressor complex 1 promotes gene silencing through H2AK119 mono-ubiquitination in acinar-to-ductal metaplasia and pancreatic cancer cells.
    Benitz S; Regel I; Reinhard T; Popp A; Schäffer I; Raulefs S; Kong B; Esposito I; Michalski CW; Kleeff J
    Oncotarget; 2016 Mar; 7(10):11424-33. PubMed ID: 26716510
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The epigenetic regulators Bmi1 and Ring1B are differentially regulated in pancreatitis and pancreatic ductal adenocarcinoma.
    Martínez-Romero C; Rooman I; Skoudy A; Guerra C; Molero X; González A; Iglesias M; Lobato T; Bosch A; Barbacid M; Real FX; Hernández-Muñoz I
    J Pathol; 2009 Oct; 219(2):205-13. PubMed ID: 19585519
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ubiquitin E3 ligase Ring1b/Rnf2 of polycomb repressive complex 1 contributes to stable maintenance of mouse embryonic stem cells.
    van der Stoop P; Boutsma EA; Hulsman D; Noback S; Heimerikx M; Kerkhoven RM; Voncken JW; Wessels LF; van Lohuizen M
    PLoS One; 2008 May; 3(5):e2235. PubMed ID: 18493325
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The acinar regulator Gata6 suppresses KrasG12V-driven pancreatic tumorigenesis in mice.
    Martinelli P; Madriles F; Cañamero M; Pau EC; Pozo ND; Guerra C; Real FX
    Gut; 2016 Mar; 65(3):476-86. PubMed ID: 25596178
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ring1B promotes hepatic stem/progenitor cell expansion through simultaneous suppression of Cdkn1a and Cdkn2a in mice.
    Koike H; Ueno Y; Naito T; Shiina T; Nakata S; Ouchi R; Obana Y; Sekine K; Zheng YW; Takebe T; Isono K; Koseki H; Taniguchi H
    Hepatology; 2014 Jul; 60(1):323-33. PubMed ID: 24497168
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Nicotine promotes initiation and progression of KRAS-induced pancreatic cancer via Gata6-dependent dedifferentiation of acinar cells in mice.
    Hermann PC; Sancho P; Cañamero M; Martinelli P; Madriles F; Michl P; Gress T; de Pascual R; Gandia L; Guerra C; Barbacid M; Wagner M; Vieira CR; Aicher A; Real FX; Sainz B; Heeschen C
    Gastroenterology; 2014 Nov; 147(5):1119-33.e4. PubMed ID: 25127677
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Hes1 Controls Exocrine Cell Plasticity and Restricts Development of Pancreatic Ductal Adenocarcinoma in a Mouse Model.
    Hidalgo-Sastre A; Brodylo RL; Lubeseder-Martellato C; Sipos B; Steiger K; Lee M; von Figura G; Grünwald B; Zhong S; Trajkovic-Arsic M; Neff F; Schmid RM; Siveke JT
    Am J Pathol; 2016 Nov; 186(11):2934-2944. PubMed ID: 27639167
    [TBL] [Abstract][Full Text] [Related]  

  • 9. NFATc1 Links EGFR Signaling to Induction of Sox9 Transcription and Acinar-Ductal Transdifferentiation in the Pancreas.
    Chen NM; Singh G; Koenig A; Liou GY; Storz P; Zhang JS; Regul L; Nagarajan S; Kühnemuth B; Johnsen SA; Hebrok M; Siveke J; Billadeau DD; Ellenrieder V; Hessmann E
    Gastroenterology; 2015 May; 148(5):1024-1034.e9. PubMed ID: 25623042
    [TBL] [Abstract][Full Text] [Related]  

  • 10. H2AK119Ub1 and H3K27Me3 in molecular staging for survival prediction of patients with pancreatic ductal adenocarcinoma.
    Chen S; Chen J; Zhan Q; Zhu Y; Chen H; Deng X; Hou Z; Shen B; Chen Y; Peng C
    Oncotarget; 2014 Nov; 5(21):10421-33. PubMed ID: 25431952
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Acinar cell reprogramming: a clinically important target in pancreatic disease.
    Pin CL; Ryan JF; Mehmood R
    Epigenomics; 2015; 7(2):267-81. PubMed ID: 25942535
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A novel pancreatic cancer model originated from transformation of acinar cells in adult tree shrew, a primate-like animal.
    Tu Q; Yang D; Zhang X; Jia X; An S; Yan L; Dai H; Ma Y; Tang C; Tong W; Hou Z; Lv L; Tan J; Zhao X
    Dis Model Mech; 2019 Apr; 12(4):. PubMed ID: 30910991
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dynamic landscape of pancreatic carcinogenesis reveals early molecular networks of malignancy.
    Kong B; Bruns P; Behler NA; Chang L; Schlitter AM; Cao J; Gewies A; Ruland J; Fritzsche S; Valkovskaya N; Jian Z; Regel I; Raulefs S; Irmler M; Beckers J; Friess H; Erkan M; Mueller NS; Roth S; Hackert T; Esposito I; Theis FJ; Kleeff J; Michalski CW
    Gut; 2018 Jan; 67(1):146-156. PubMed ID: 27646934
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Epigenetic reprogramming in Mist1(-/-) mice predicts the molecular response to cerulein-induced pancreatitis.
    Mehmood R; Varga G; Mohanty SQ; Laing SW; Lu Y; Johnson CL; Kharitonenkov A; Pin CL
    PLoS One; 2014; 9(1):e84182. PubMed ID: 24465395
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ring1b bookmarks genes in pancreatic embryonic progenitors for repression in adult β cells.
    van Arensbergen J; García-Hurtado J; Maestro MA; Correa-Tapia M; Rutter GA; Vidal M; Ferrer J
    Genes Dev; 2013 Jan; 27(1):52-63. PubMed ID: 23271347
    [TBL] [Abstract][Full Text] [Related]  

  • 16. NFATc1 Is a Central Mediator of EGFR-Induced ARID1A Chromatin Dissociation During Acinar Cell Reprogramming.
    Zhang Z; Wang X; Hamdan FH; Likhobabina A; Patil S; Aperdannier L; Sen M; Traub J; Neesse A; Fischer A; Papantonis A; Singh SK; Ellenrieder V; Johnsen SA; Hessmann E
    Cell Mol Gastroenterol Hepatol; 2023; 15(5):1219-1246. PubMed ID: 36758798
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Context-Dependent Epigenetic Regulation of Nuclear Factor of Activated T Cells 1 in Pancreatic Plasticity.
    Chen NM; Neesse A; Dyck ML; Steuber B; Koenig AO; Lubeseder-Martellato C; Winter T; Forster T; Bohnenberger H; Kitz J; Reuter-Jessen K; Griesmann H; Gaedcke J; Grade M; Zhang JS; Tsai WC; Siveke J; Schildhaus HU; Ströbel P; Johnsen SA; Ellenrieder V; Hessmann E
    Gastroenterology; 2017 May; 152(6):1507-1520.e15. PubMed ID: 28188746
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Snail recruits Ring1B to mediate transcriptional repression and cell migration in pancreatic cancer cells.
    Chen J; Xu H; Zou X; Wang J; Zhu Y; Chen H; Shen B; Deng X; Zhou A; Chin YE; Rauscher FJ; Peng C; Hou Z
    Cancer Res; 2014 Aug; 74(16):4353-63. PubMed ID: 24903147
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Epigenetic silencing of AATK in acinar to ductal metaplasia in murine model of pancreatic cancer.
    Ding LY; Hou YC; Kuo IY; Hsu TY; Tsai TC; Chang HW; Hsu WY; Tsao CC; Tian CC; Wang PS; Wang HC; Lee CT; Wang YC; Lin SH; Hughes MW; Chuang WJ; Lu PJ; Shan YS; Huang PH
    Clin Epigenetics; 2020 Jun; 12(1):87. PubMed ID: 32552862
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Role of polycomb proteins Ring1A and Ring1B in the epigenetic regulation of gene expression.
    Vidal M
    Int J Dev Biol; 2009; 53(2-3):355-70. PubMed ID: 19412891
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.