These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
106 related articles for article (PubMed ID: 30955322)
1. Rapid, Untargeted Chemical Profiling of Single Cells in Their Native Environment. Cahill JF; Riba J; Kertesz V Anal Chem; 2019 May; 91(9):6118-6126. PubMed ID: 30955322 [TBL] [Abstract][Full Text] [Related]
2. Laser Capture Microdissection-Liquid Vortex Capture Mass Spectrometry Metabolic Profiling of Single Onion Epidermis and Microalgae Cells. Cahill JF; Kertesz V Methods Mol Biol; 2020; 2064():89-101. PubMed ID: 31565768 [TBL] [Abstract][Full Text] [Related]
3. Laser dissection sampling modes for direct mass spectral analysis. Cahill JF; Kertesz V; Van Berkel GJ Rapid Commun Mass Spectrom; 2016 Mar; 30(5):611-9. PubMed ID: 26842582 [TBL] [Abstract][Full Text] [Related]
4. Metabolic transformation of microalgae due to light acclimation and genetic modifications followed by laser ablation electrospray ionization mass spectrometry with ion mobility separation. Stopka SA; Shrestha B; Maréchal É; Falconet D; Vertes A Analyst; 2014 Nov; 139(22):5945-53. PubMed ID: 25254963 [TBL] [Abstract][Full Text] [Related]
5. Lipidomic Analysis of Chlamydomonas reinhardtii under Nitrogen and Sulfur Deprivation. Yang D; Song D; Kind T; Ma Y; Hoefkens J; Fiehn O PLoS One; 2015; 10(9):e0137948. PubMed ID: 26375463 [TBL] [Abstract][Full Text] [Related]
6. A MALDI-MS Methodology for Studying Metabolic Heterogeneity of Single Cells in a Population. Krismer J; Sobek J; Steinhoff RF; Brönnimann R; Pabst M; Zenobi R Methods Mol Biol; 2020; 2064():113-124. PubMed ID: 31565770 [TBL] [Abstract][Full Text] [Related]
7. Triacylglycerol accumulates exclusively outside the chloroplast in short-term nitrogen-deprived Chlamydomonas reinhardtii. Yang M; Meng Y; Chu Y; Fan Y; Cao X; Xue S; Chi Z Biochim Biophys Acta Mol Cell Biol Lipids; 2018 Dec; 1863(12):1478-1487. PubMed ID: 30266428 [TBL] [Abstract][Full Text] [Related]
8. Intracellular localization of two betaine lipids by cell fractionation and immunomicroscopy. Künzler K; Eichenberger W; Radunz A Z Naturforsch C J Biosci; 1997; 52(7-8):487-95. PubMed ID: 9309879 [TBL] [Abstract][Full Text] [Related]
9. Quantitation of amiodarone and N-desethylamiodarone in single HepG2 cells by single-cell printing-liquid vortex capture-mass spectrometry. Cahill JF; Kertesz V Anal Bioanal Chem; 2021 Nov; 413(28):6917-6927. PubMed ID: 34595558 [TBL] [Abstract][Full Text] [Related]
10. Trophic transfer of gold nanoparticles from Euglena gracilis or Chlamydomonas reinhardtii to Daphnia magna. Lee WM; Yoon SJ; Shin YJ; An YJ Environ Pollut; 2015 Jun; 201():10-6. PubMed ID: 25756227 [TBL] [Abstract][Full Text] [Related]
11. Automated Optically Guided System for Chemical Analysis of Single Plant and Algae Cells Using Laser Microdissection/Liquid Vortex Capture/Mass Spectrometry. Cahill JF; Kertesz V Front Plant Sci; 2018; 9():1211. PubMed ID: 30177941 [TBL] [Abstract][Full Text] [Related]
12. Live cell imaging compatible immobilization of Chlamydomonas reinhardtii in microfluidic platform for biodiesel research. Park JW; Na SC; Nguyen TQ; Paik SM; Kang M; Hong D; Choi IS; Lee JH; Jeon NL Biotechnol Bioeng; 2015 Mar; 112(3):494-501. PubMed ID: 25220860 [TBL] [Abstract][Full Text] [Related]
13. Differences in betaine lipids and fatty acids between Pseudoisochrysis paradoxa VLP and Diacronema vlkianum VLP isolates (Haptophyta). Armada I; Hachero-Cruzado I; Mazuelos N; Ríos JL; Manchado M; Cañavate JP Phytochemistry; 2013 Nov; 95():224-33. PubMed ID: 23954077 [TBL] [Abstract][Full Text] [Related]
14. Molecular characterization of water extractable Euglena gracilis cellular material composition using asymmetrical flow field-flow fractionation and high-resolution mass spectrometry. Lewis A; Guéguen C Anal Bioanal Chem; 2020 Jul; 412(17):4143-4153. PubMed ID: 32306068 [TBL] [Abstract][Full Text] [Related]
15. Online, Absolute Quantitation of Propranolol from Spatially Distinct 20- and 40-μm Dissections of Brain, Liver, and Kidney Thin Tissue Sections by Laser Microdissection-Liquid Vortex Capture-Mass Spectrometry. Cahill JF; Kertesz V; Weiskittel TM; Vavrek M; Freddo C; Van Berkel GJ Anal Chem; 2016 Jun; 88(11):6026-34. PubMed ID: 27214103 [TBL] [Abstract][Full Text] [Related]
16. Investigating the Uptake of Arsenate by Mavrakis E; Mavroudakis L; Lydakis-Simantiris N; Pergantis SA Anal Chem; 2019 Aug; 91(15):9590-9598. PubMed ID: 31269797 [TBL] [Abstract][Full Text] [Related]
17. Three-dimensional Kendrick mass plots as a tool for graphical lipid identification. Korf A; Vosse C; Schmid R; Helmer PO; Jeck V; Hayen H Rapid Commun Mass Spectrom; 2018 Jun; 32(12):981-991. PubMed ID: 29575335 [TBL] [Abstract][Full Text] [Related]
18. High-Throughput Accurate Single-Cell Screening of Euglena gracilis with Fluorescence-Assisted Optofluidic Time-Stretch Microscopy. Guo B; Lei C; Ito T; Jiang Y; Ozeki Y; Goda K PLoS One; 2016; 11(11):e0166214. PubMed ID: 27846239 [TBL] [Abstract][Full Text] [Related]
19. Screening of Chlamydomonas reinhardtii Populations with Single-Cell Resolution by Using a High-Throughput Microscale Sample Preparation for Matrix-Assisted Laser Desorption Ionization Mass Spectrometry. Krismer J; Sobek J; Steinhoff RF; Fagerer SR; Pabst M; Zenobi R Appl Environ Microbiol; 2015 Aug; 81(16):5546-51. PubMed ID: 26048935 [TBL] [Abstract][Full Text] [Related]
20. Surface analysis of lipids by mass spectrometry: more than just imaging. Ellis SR; Brown SH; In Het Panhuis M; Blanksby SJ; Mitchell TW Prog Lipid Res; 2013 Oct; 52(4):329-53. PubMed ID: 23623802 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]