These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

152 related articles for article (PubMed ID: 30955341)

  • 1. Diffusion Decoupling in Binary Colloidal Systems Observed with Contrast Variation Multispeckle Diffusing Wave Spectroscopy.
    Higler R; Frijns RAM; Sprakel J
    Langmuir; 2019 Apr; 35(17):5793-5801. PubMed ID: 30955341
    [TBL] [Abstract][Full Text] [Related]  

  • 2. "Dense diffusion" in colloidal glasses: short-ranged long-time self-diffusion as a mechanistic model for relaxation dynamics.
    Wang JG; Li Q; Peng X; McKenna GB; Zia RN
    Soft Matter; 2020 Aug; 16(31):7370-7389. PubMed ID: 32696798
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fast dynamics and relaxation of colloidal drops during the drying process using multispeckle diffusing wave spectroscopy.
    Lee JY; Hwang JW; Jung HW; Kim SH; Lee SJ; Yoon K; Weitz DA
    Langmuir; 2013 Jan; 29(3):861-6. PubMed ID: 23281633
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Multispeckle diffusing wave spectroscopy of colloidal particles suspended in a random packing of glass spheres.
    Snabre P; Crassous J
    Eur Phys J E Soft Matter; 2009 Jun; 29(2):149-55. PubMed ID: 19521727
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Soft colloids make strong glasses.
    Mattsson J; Wyss HM; Fernandez-Nieves A; Miyazaki K; Hu Z; Reichman DR; Weitz DA
    Nature; 2009 Nov; 462(7269):83-6. PubMed ID: 19890327
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Three-dimensional direct imaging of structural relaxation near the colloidal glass transition.
    Weeks ER; Crocker JC; Levitt AC; Schofield A; Weitz DA
    Science; 2000 Jan; 287(5453):627-31. PubMed ID: 10649991
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Structural signature of slow dynamics and dynamic heterogeneity in two-dimensional colloidal liquids: glassy structural order.
    Kawasaki T; Tanaka H
    J Phys Condens Matter; 2011 May; 23(19):194121. PubMed ID: 21525551
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fragile-to-strong crossover, growing length scales, and dynamic heterogeneity in Wigner glasses.
    Cho HW; Mugnai ML; Kirkpatrick TR; Thirumalai D
    Phys Rev E; 2020 Mar; 101(3-1):032605. PubMed ID: 32290023
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Structure ordering and glass transition in size-asymmetric ternary mixtures of hard spheres: Variation from fragile to strong glasses.
    Singh A; Singh Y
    Phys Rev E; 2023 Jan; 107(1-1):014119. PubMed ID: 36797956
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dynamics and structure of an aging binary colloidal glass.
    Lynch JM; Cianci GC; Weeks ER
    Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Sep; 78(3 Pt 1):031410. PubMed ID: 18851041
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Long-term aging behaviors in a model soft colloidal system.
    Li Q; Peng X; McKenna GB
    Soft Matter; 2017 Feb; 13(7):1396-1404. PubMed ID: 28120996
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Relaxation dynamics in a binary hard-ellipse liquid.
    Xu WS; Sun ZY; An LJ
    Soft Matter; 2015 Jan; 11(3):627-34. PubMed ID: 25466776
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Decoupling of rotation and translation at the colloidal glass transition.
    Geiger J; Grimm N; Fuchs M; Zumbusch A
    J Chem Phys; 2024 Jul; 161(1):. PubMed ID: 38958164
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Activated penetrant dynamics in glass forming liquids: size effects, decoupling, slaving, collective elasticity and correlation with matrix compressibility.
    Mei B; Schweizer KS
    Soft Matter; 2021 Mar; 17(9):2624-2639. PubMed ID: 33528485
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Molecular dynamics study of the stability of the hard sphere glass.
    Williams SR; Snook IK; van Megen W
    Phys Rev E Stat Nonlin Soft Matter Phys; 2001 Aug; 64(2 Pt 1):021506. PubMed ID: 11497588
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Rejuvenation and overaging in a colloidal glass under shear.
    Viasnoff V; Lequeux F
    Phys Rev Lett; 2002 Aug; 89(6):065701. PubMed ID: 12190596
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Macromolecular crowding: chemistry and physics meet biology (Ascona, Switzerland, 10-14 June 2012).
    Foffi G; Pastore A; Piazza F; Temussi PA
    Phys Biol; 2013 Aug; 10(4):040301. PubMed ID: 23912807
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Binary colloidal glasses: linear viscoelasticity and its link to the microscopic structure and dynamics.
    Sentjabrskaja T; Jacob AR; Egelhaaf SU; Petekidis G; Voigtmann T; Laurati M
    Soft Matter; 2019 Mar; 15(10):2232-2244. PubMed ID: 30794267
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Physical aging and structural recovery in a colloidal glass subjected to volume-fraction jump conditions.
    Peng X; McKenna GB
    Phys Rev E; 2016 Apr; 93():042603. PubMed ID: 27176348
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Translational and rotational critical-like behaviors in the glass transition of colloidal ellipsoid monolayers.
    Zheng Z; Ni R; Wang Y; Han Y
    Sci Adv; 2021 Jan; 7(3):. PubMed ID: 33523902
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.