BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 30955658)

  • 1. iTRAQ-based proteomic analysis reveals the accumulation of bioactive compounds in Chinese wild rice (Zizania latifolia) during germination.
    Chu C; Yan N; Du Y; Liu X; Chu M; Shi J; Zhang H; Liu Y; Zhang Z
    Food Chem; 2019 Aug; 289():635-644. PubMed ID: 30955658
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dynamics of antioxidant activities, metabolites, phenolic acids, flavonoids, and phenolic biosynthetic genes in germinating Chinese wild rice (Zizania latifolia).
    Chu C; Du Y; Yu X; Shi J; Yuan X; Liu X; Liu Y; Zhang H; Zhang Z; Yan N
    Food Chem; 2020 Jul; 318():126483. PubMed ID: 32126468
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comparative proteomics and protein profile related to phenolic compounds and antioxidant activity in germinated Oryza sativa 'KDML105' and Thai brown rice 'Mali Daeng' for better nutritional value.
    Maksup S; Pongpakpian S; Roytrakul S; Cha-Um S; Supaibulwatana K
    J Sci Food Agric; 2018 Jan; 98(2):566-573. PubMed ID: 28646518
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Metabolomics and proteomics reveal the molecular basis of colour formation in the pericarp of Chinese wild rice (Zizania latifolia).
    Yu X; Qi Q; Li Y; Li N; Xie Y; Ding A; Shi J; Du Y; Liu X; Zhang Z; Yan N
    Food Res Int; 2022 Dec; 162(Pt B):112082. PubMed ID: 36461331
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Analysis of Active Components and Proteomics of Chinese Wild Rice (Zizania latifolia (Griseb) Turcz) and Indica Rice (Nagina22).
    Jiang MX; Zhai LJ; Yang H; Zhai SM; Zhai CK
    J Med Food; 2016 Aug; 19(8):798-804. PubMed ID: 27533651
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of germination on the nutritive value and bioactive compounds of brown rice breads.
    Cornejo F; Caceres PJ; Martínez-Villaluenga C; Rosell CM; Frias J
    Food Chem; 2015 Apr; 173():298-304. PubMed ID: 25466026
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of pulsed light on germination and gamma-aminobutyric acid synthesis in brown rice.
    Zhang L; Du L; Shi T; Xie M; Liu X; Yu M
    J Food Sci; 2022 Apr; 87(4):1601-1609. PubMed ID: 35201612
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Constructing the metabolic and regulatory pathways in germinating rice seeds through proteomic approach.
    He D; Han C; Yao J; Shen S; Yang P
    Proteomics; 2011 Jul; 11(13):2693-713. PubMed ID: 21630451
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dissection of brassinosteroid-regulated proteins in rice embryos during germination by quantitative proteomics.
    Li QF; Xiong M; Xu P; Huang LC; Zhang CQ; Liu QQ
    Sci Rep; 2016 Oct; 6():34583. PubMed ID: 27703189
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of germination in the form of paddy rice and brown rice on their phytic acid, GABA, γ-oryzanol, phenolics, flavonoids and antioxidant capacity.
    Wu NN; Li R; Li ZJ; Tan B
    Food Res Int; 2022 Sep; 159():111603. PubMed ID: 35940799
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Enhancing Contents of γ-Aminobutyric Acid (GABA) and Other Micronutrients in Dehulled Rice during Germination under Normoxic and Hypoxic Conditions.
    Ding J; Yang T; Feng H; Dong M; Slavin M; Xiong S; Zhao S
    J Agric Food Chem; 2016 Feb; 64(5):1094-102. PubMed ID: 26765954
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Quantitative proteomics reveals the role of protein phosphorylation in rice embryos during early stages of germination.
    Han C; Yang P; Sakata K; Komatsu S
    J Proteome Res; 2014 Mar; 13(3):1766-82. PubMed ID: 24460219
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Enhancement of gama-aminobutyric acid (GABA) and other health-related metabolites in germinated red rice (Oryza sativa L.) by ultrasonication.
    Ding J; Ulanov AV; Dong M; Yang T; Nemzer BV; Xiong S; Zhao S; Feng H
    Ultrason Sonochem; 2018 Jan; 40(Pt A):791-797. PubMed ID: 28946487
    [TBL] [Abstract][Full Text] [Related]  

  • 14. iTRAQ-Based Analysis of Proteins Co-Regulated by Brassinosteroids and Gibberellins in Rice Embryos during Seed Germination.
    Li QF; Wang JD; Xiong M; Wei K; Zhou P; Huang LC; Zhang CQ; Fan XL; Liu QQ
    Int J Mol Sci; 2018 Nov; 19(11):. PubMed ID: 30400353
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of Germination on Protein, γ-Aminobutyric Acid, Phenolic Acids, and Antioxidant Capacity in Wheat.
    Kim MJ; Kwak HS; Kim SS
    Molecules; 2018 Sep; 23(9):. PubMed ID: 30177646
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Differential Proteomic Analysis Using iTRAQ Reveals Alterations in Hull Development in Rice (Oryza sativa L.).
    Wang S; Chen W; Xiao W; Yang C; Xin Y; Qiu J; Hu W; Ying W; Fu Y; Tong J; Hu G; Chen Z; Fang X; Yu H; Lai W; Ruan S; Ma H
    PLoS One; 2015; 10(7):e0133696. PubMed ID: 26230730
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Germinated brown rice and its bio-functional compounds.
    Cho DH; Lim ST
    Food Chem; 2016 Apr; 196():259-71. PubMed ID: 26593491
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Partial Purification, Identification, and Quantitation of Antioxidants from Wild Rice (
    Chu MJ; Liu XM; Yan N; Wang FZ; Du YM; Zhang ZF
    Molecules; 2018 Oct; 23(11):. PubMed ID: 30373196
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Study on Differential Protein Expression in Natural Selenium-Enriched and Non-Selenium-Enriched Rice Based on iTRAQ Quantitative Proteomics.
    Zeng R; Farooq MU; Wang L; Su Y; Zheng T; Ye X; Jia X; Zhu J
    Biomolecules; 2019 Mar; 9(4):. PubMed ID: 30935009
    [TBL] [Abstract][Full Text] [Related]  

  • 20. In-depth proteomic analysis of rice embryo reveals its important roles in seed germination.
    Han C; He D; Li M; Yang P
    Plant Cell Physiol; 2014 Oct; 55(10):1826-47. PubMed ID: 25231964
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.