These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 30955658)

  • 21. Molecular Mechanisms Underlying γ-Aminobutyric Acid (GABA) Accumulation in Giant Embryo Rice Seeds.
    Zhao GC; Xie MX; Wang YC; Li JY
    J Agric Food Chem; 2017 Jun; 65(24):4883-4889. PubMed ID: 28587460
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Maximising the phytochemical content and antioxidant activity of Ecuadorian brown rice sprouts through optimal germination conditions.
    Cáceres PJ; Martínez-Villaluenga C; Amigo L; Frias J
    Food Chem; 2014; 152():407-14. PubMed ID: 24444955
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Comparative proteomic and physiological analyses reveal the protective effect of exogenous calcium on the germinating soybean response to salt stress.
    Yin Y; Yang R; Han Y; Gu Z
    J Proteomics; 2015 Jan; 113():110-26. PubMed ID: 25284050
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Gene expression profile changes in germinating rice.
    He D; Han C; Yang P
    J Integr Plant Biol; 2011 Oct; 53(10):835-44. PubMed ID: 21910826
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Genetic manipulation of the γ-aminobutyric acid (GABA) shunt in rice: overexpression of truncated glutamate decarboxylase (GAD2) and knockdown of γ-aminobutyric acid transaminase (GABA-T) lead to sustained and high levels of GABA accumulation in rice kernels.
    Shimajiri Y; Oonishi T; Ozaki K; Kainou K; Akama K
    Plant Biotechnol J; 2013 Jun; 11(5):594-604. PubMed ID: 23421475
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Global Proteome Analyses of Lysine Acetylation and Succinylation Reveal the Widespread Involvement of both Modification in Metabolism in the Embryo of Germinating Rice Seed.
    He D; Wang Q; Li M; Damaris RN; Yi X; Cheng Z; Yang P
    J Proteome Res; 2016 Mar; 15(3):879-90. PubMed ID: 26767346
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Changes in phenolic acid composition and associated enzyme activity in shoot and kernel fractions of brown rice during germination.
    Cho DH; Lim ST
    Food Chem; 2018 Aug; 256():163-170. PubMed ID: 29606433
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Physiological and iTRAQ-based proteomic analyses reveal the function of exogenous γ-aminobutyric acid (GABA) in improving tea plant (Camellia sinensis L.) tolerance at cold temperature.
    Zhu X; Liao J; Xia X; Xiong F; Li Y; Shen J; Wen B; Ma Y; Wang Y; Fang W
    BMC Plant Biol; 2019 Jan; 19(1):43. PubMed ID: 30700249
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The γ-Aminobutyric Acid (GABA) Alleviates Salt Stress Damage during Seeds Germination of White Clover Associated with Na⁺/K⁺ Transportation, Dehydrins Accumulation, and Stress-Related Genes Expression in White Clover.
    Cheng B; Li Z; Liang L; Cao Y; Zeng W; Zhang X; Ma X; Huang L; Nie G; Liu W; Peng Y
    Int J Mol Sci; 2018 Aug; 19(9):. PubMed ID: 30149642
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Dynamic changes in the free and bound phenolic compounds and antioxidant activity of brown rice at different germination stages.
    Ti H; Zhang R; Zhang M; Li Q; Wei Z; Zhang Y; Tang X; Deng Y; Liu L; Ma Y
    Food Chem; 2014 Oct; 161():337-44. PubMed ID: 24837960
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Proteomic Analysis Reveals Coordinated Regulation of Anthocyanin Biosynthesis through Signal Transduction and Sugar Metabolism in Black Rice Leaf.
    Chen L; Huang Y; Xu M; Cheng Z; Zheng J
    Int J Mol Sci; 2017 Dec; 18(12):. PubMed ID: 29244752
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Enhancement of γ-aminobutyric acid and relevant metabolites in brown glutinous rice (Oryza sativa L.) through salt stress and low-frequency ultrasound treatments at pre-germination stage.
    Wu Y; He S; Pan T; Miao X; Xiang J; Ye Y; Cao X; Sun H
    Food Chem; 2023 Jun; 410():135362. PubMed ID: 36608561
    [TBL] [Abstract][Full Text] [Related]  

  • 33. An improved process for high nutrition of germinated brown rice production: Low-pressure plasma.
    Chen HH; Chang HC; Chen YK; Hung CL; Lin SY; Chen YS
    Food Chem; 2016 Jan; 191():120-7. PubMed ID: 26258710
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Studies on the molecular mechanisms of seed germination.
    Han C; Yang P
    Proteomics; 2015 May; 15(10):1671-9. PubMed ID: 25597791
    [TBL] [Abstract][Full Text] [Related]  

  • 35. OsLOL1, a C2C2-type zinc finger protein, interacts with OsbZIP58 to promote seed germination through the modulation of gibberellin biosynthesis in Oryza sativa.
    Wu J; Zhu C; Pang J; Zhang X; Yang C; Xia G; Tian Y; He C
    Plant J; 2014 Dec; 80(6):1118-30. PubMed ID: 25353370
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Influence of light on the free amino acid content and γ-aminobutyric acid synthesis in Brassica juncea seedlings.
    Li X; Kim YB; Uddin MR; Lee S; Kim SJ; Park SU
    J Agric Food Chem; 2013 Sep; 61(36):8624-31. PubMed ID: 23909820
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Isobaric Tags for Relative and Absolute Quantitation Proteomic Analysis of Germinating Barley under Gibberellin and Abscisic Acid Treatments.
    Huang Y; Cai S; Zeng J; Wu D; Zhang G
    J Agric Food Chem; 2017 Mar; 65(10):2248-2257. PubMed ID: 28221792
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Analysis of dynamic protein carbonylation in rice embryo during germination through AP-SWATH.
    Zhang H; He D; Yu J; Li M; Damaris RN; Gupta R; Kim ST; Yang P
    Proteomics; 2016 Mar; 16(6):989-1000. PubMed ID: 26801057
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Gel-based comparative phosphoproteomic analysis on rice embryo during germination.
    Han C; Wang K; Yang P
    Plant Cell Physiol; 2014 Aug; 55(8):1376-94. PubMed ID: 24793751
    [TBL] [Abstract][Full Text] [Related]  

  • 40. ITRAQ-Based Proteomic Analysis of the Metabolic Mechanisms Behind Lipid Accumulation and Degradation during Peanut Seed Development and Postgermination.
    Wang Y; Ma X; Zhang X; He X; Li H; Cui D; Yin D
    J Proteome Res; 2016 Dec; 15(12):4277-4289. PubMed ID: 27669742
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.