These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
251 related articles for article (PubMed ID: 30955782)
21. Alterations induced by titanium dioxide nanoparticles (nano-TiO Palmeira-Pinto L; Emerenciano AK; Bergami E; Joviano WR; Rosa AR; Neves CL; Corsi I; Marques-Santos LF; Silva JRMC Mar Environ Res; 2023 Jun; 188():106016. PubMed ID: 37167835 [TBL] [Abstract][Full Text] [Related]
22. Effects of ocean warming and acidification on fertilization in the Antarctic echinoid Sterechinus neumayeri across a range of sperm concentrations. Ho MA; Price C; King CK; Virtue P; Byrne M Mar Environ Res; 2013 Sep; 90():136-41. PubMed ID: 23948149 [TBL] [Abstract][Full Text] [Related]
23. Impacts of ocean acidification on sea urchin growth across the juvenile to mature adult life-stage transition is mitigated by warming. Dworjanyn SA; Byrne M Proc Biol Sci; 2018 Apr; 285(1876):. PubMed ID: 29643209 [TBL] [Abstract][Full Text] [Related]
24. Behavioral and physiological effects of ocean acidification and warming on larvae of a continental shelf bivalve. Czaja R; Holmberg R; Pales Espinosa E; Hennen D; Cerrato R; Lwiza K; O'Dwyer J; Beal B; Root K; Zuklie H; Allam B Mar Pollut Bull; 2023 Jul; 192():115048. PubMed ID: 37236091 [TBL] [Abstract][Full Text] [Related]
25. The combined effects of ocean warming and acidification on shallow-water meiofaunal assemblages. Lee MR; Torres R; Manríquez PH Mar Environ Res; 2017 Oct; 131():1-9. PubMed ID: 28919151 [TBL] [Abstract][Full Text] [Related]
26. Responses of marine trophic levels to the combined effects of ocean acidification and warming. Hu N; Bourdeau PE; Hollander J Nat Commun; 2024 Apr; 15(1):3400. PubMed ID: 38649374 [TBL] [Abstract][Full Text] [Related]
27. [Embrionary and larval development of Lytechinus variegatus (Echinoidea: Toxopneustidae) in laboratory conditions at Isla de Margarita-Venezuela]. Gómez O; Gómez A Rev Biol Trop; 2005 Dec; 53 Suppl 3():313-8. PubMed ID: 17469261 [TBL] [Abstract][Full Text] [Related]
28. In situ developmental responses of tropical sea urchin larvae to ocean acidification conditions at naturally elevated pCO2 vent sites. Lamare MD; Liddy M; Uthicke S Proc Biol Sci; 2016 Nov; 283(1843):. PubMed ID: 27903867 [TBL] [Abstract][Full Text] [Related]
29. Simplification, not "tropicalization", of temperate marine ecosystems under ocean warming and acidification. Agostini S; Harvey BP; Milazzo M; Wada S; Kon K; Floc'h N; Komatsu K; Kuroyama M; Hall-Spencer JM Glob Chang Biol; 2021 Oct; 27(19):4771-4784. PubMed ID: 34268836 [TBL] [Abstract][Full Text] [Related]
30. Differential impacts of ocean acidification and warming on winter and summer progeny of a coastal squid (Loligo vulgaris). Rosa R; Trübenbach K; Pimentel MS; Boavida-Portugal J; Faleiro F; Baptista M; Dionísio G; Calado R; Pörtner HO; Repolho T J Exp Biol; 2014 Feb; 217(Pt 4):518-25. PubMed ID: 24523499 [TBL] [Abstract][Full Text] [Related]
31. Abundance, size, and survival of recruits of the reef coral Pocillopora acuta under ocean warming and acidification. Bahr KD; Tran T; Jury CP; Toonen RJ PLoS One; 2020; 15(2):e0228168. PubMed ID: 32017776 [TBL] [Abstract][Full Text] [Related]
32. Impact of ocean acidification on the early development and escape behavior of marine medaka (Oryzias melastigma). Wang X; Song L; Chen Y; Ran H; Song J Mar Environ Res; 2017 Oct; 131():10-18. PubMed ID: 28923289 [TBL] [Abstract][Full Text] [Related]
33. Sea urchin fertilization in a warm, acidified and high pCO2 ocean across a range of sperm densities. Byrne M; Soars N; Selvakumaraswamy P; Dworjanyn SA; Davis AR Mar Environ Res; 2010 May; 69(4):234-9. PubMed ID: 19913293 [TBL] [Abstract][Full Text] [Related]
34. Temperature, but not pH, compromises sea urchin fertilization and early development under near-future climate change scenarios. Byrne M; Ho M; Selvakumaraswamy P; Nguyen HD; Dworjanyn SA; Davis AR Proc Biol Sci; 2009 May; 276(1663):1883-8. PubMed ID: 19324767 [TBL] [Abstract][Full Text] [Related]
35. Combined effect of microplastics and global warming factors on early growth and development of the sea urchin (Paracentrotus lividus). Bertucci JI; Bellas J Sci Total Environ; 2021 Aug; 782():146888. PubMed ID: 33848869 [TBL] [Abstract][Full Text] [Related]
36. Effects of oil and global environmental drivers on two keystone marine invertebrates. Arnberg M; Calosi P; Spicer JI; Taban IC; Bamber SD; Westerlund S; Vingen S; Baussant T; Bechmann RK; Dupont S Sci Rep; 2018 Nov; 8(1):17380. PubMed ID: 30478380 [TBL] [Abstract][Full Text] [Related]
37. EXTENDING THE VIABILITY OF SPERMATOZOA AND EGGS OF THE SEA URCHIN LYTECHINUS VARIEGATUS. Malgarin J; Resgalla C Cryo Letters; 2015; 36(3):174-81. PubMed ID: 26510335 [TBL] [Abstract][Full Text] [Related]
38. Coral responses to ocean warming and acidification: Implications for future distribution of coral reefs in the South China Sea. Yuan X; Guo Y; Cai WJ; Huang H; Zhou W; Liu S Mar Pollut Bull; 2019 Jan; 138():241-248. PubMed ID: 30660269 [TBL] [Abstract][Full Text] [Related]
39. The sea urchin Lytechinus variegatus lives close to the upper thermal limit for early development in a tropical lagoon. Collin R; Chan KY Ecol Evol; 2016 Aug; 6(16):5623-34. PubMed ID: 27547342 [TBL] [Abstract][Full Text] [Related]
40. Complex and interactive effects of ocean acidification and warming on the life span of a marine trematode parasite. Franzova VA; MacLeod CD; Wang T; Harley CDG Int J Parasitol; 2019 Dec; 49(13-14):1015-1021. PubMed ID: 31655036 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]