These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
91 related articles for article (PubMed ID: 3095637)
1. Viability damage of Aspergillus flavus spores by an antifungal aerosol. Vidor E; Viret M; Isoard P Mykosen; 1986 Sep; 29(9):401-6. PubMed ID: 3095637 [No Abstract] [Full Text] [Related]
2. Interaction of local anaesthetics with other antifungal agents against pathogenic Aspergillus. Rodrigues AG; Araujo R; Pina-Vaz C Int J Antimicrob Agents; 2006 Apr; 27(4):339-43. PubMed ID: 16527460 [TBL] [Abstract][Full Text] [Related]
3. [Experimental finding with a new type of fungicide]. Wohlrab W; Wozniak KD; Schwabe K; Tschiersch B; Tanneberger S; Zaumseil RP; Taube KM Mykosen; 1982 Sep; 25(9):487-96. PubMed ID: 6755244 [No Abstract] [Full Text] [Related]
4. Effects of citral on Aspergillus flavus spores by quasi-elastic light scattering and multiplex microanalysis techniques. Luo M; Jiang LK; Huang YX; Xiao M; Li B; Zou GL Acta Biochim Biophys Sin (Shanghai); 2004 Apr; 36(4):277-83. PubMed ID: 15253153 [TBL] [Abstract][Full Text] [Related]
5. ( E)-2-Hexenal, as a Potential Natural Antifungal Compound, Inhibits Aspergillus flavus Spore Germination by Disrupting Mitochondrial Energy Metabolism. Ma W; Zhao L; Zhao W; Xie Y J Agric Food Chem; 2019 Jan; 67(4):1138-1145. PubMed ID: 30614691 [TBL] [Abstract][Full Text] [Related]
6. [Medium optimization for antagonistic Streptomyces S24 and its inhibition on Aspergillus flavus]. Zhou Q; Liu X; Zhang N; Song Z; Qiu N; Zhang B; Guo H; Lü C; Yu J Sheng Wu Gong Cheng Xue Bao; 2011 Feb; 27(2):203-11. PubMed ID: 21650044 [TBL] [Abstract][Full Text] [Related]
7. Expression and purification of recombinant puroindoline A protein in Escherichia coli and its antifungal effect against Aspergillus flavus. Lv A; Li C; Tian P; Yuan W; Zhang S; Lv Y; Hu Y Appl Microbiol Biotechnol; 2019 Dec; 103(23-24):9515-9527. PubMed ID: 31720772 [TBL] [Abstract][Full Text] [Related]
8. Inactivation Efficacies and Mechanisms of Gas Plasma and Plasma-Activated Water against Aspergillus flavus Spores and Biofilms: a Comparative Study. Los A; Ziuzina D; Boehm D; Cullen PJ; Bourke P Appl Environ Microbiol; 2020 Apr; 86(9):. PubMed ID: 32086309 [TBL] [Abstract][Full Text] [Related]
9. Decontamination of Aspergillus flavus and Aspergillus parasiticus spores on hazelnuts via atmospheric pressure fluidized bed plasma reactor. Dasan BG; Mutlu M; Boyaci IH Int J Food Microbiol; 2016 Jan; 216():50-9. PubMed ID: 26398284 [TBL] [Abstract][Full Text] [Related]
10. Rapid hematogenous dissemination of Aspergillus fumigatus and A. flavus spores in turkey poults following aerosol exposure. Richard JL; Thurston JR Avian Dis; 1983; 27(4):1025-33. PubMed ID: 6418131 [TBL] [Abstract][Full Text] [Related]
11. Sub3 inhibits Aspergillus flavus growth by disrupting mitochondrial energy metabolism, and has potential biocontrol during peanut storage. Zhang W; Lv Y; Lv A; Wei S; Zhang S; Li C; Hu Y J Sci Food Agric; 2021 Jan; 101(2):486-496. PubMed ID: 32643802 [TBL] [Abstract][Full Text] [Related]
12. Effect of Zataria multiflora Boiss. essential oil on colony morphology and ultrastructure of Aspergillus flavus. Gandomi H; Misaghi A; Basti AA; Hamedi H; Shirvani ZR Mycoses; 2011 Sep; 54(5):e429-37. PubMed ID: 21039935 [TBL] [Abstract][Full Text] [Related]
13. ROS Involves the Fungicidal Actions of Thymol against Spores of Aspergillus flavus via the Induction of Nitric Oxide. Shen Q; Zhou W; Li H; Hu L; Mo H PLoS One; 2016; 11(5):e0155647. PubMed ID: 27196096 [TBL] [Abstract][Full Text] [Related]
14. Molecular characterisation of cyp51A and cyp51B genes coding for P450 14alpha-lanosterol demethylases A (CYP51Ap) and B (CYP51Bp) from voriconazole-resistant laboratory isolates of Aspergillus flavus. Krishnan-Natesan S; Chandrasekar PH; Alangaden GJ; Manavathu EK Int J Antimicrob Agents; 2008 Dec; 32(6):519-24. PubMed ID: 18775650 [TBL] [Abstract][Full Text] [Related]
15. Response of turkey poults to aerosolized spores of Aspergillus fumigatus and aflatoxigenic and nonaflatoxigenic strains of Aspergillus flavus. Richard JL; Cutlip RC; Thurston JR; Songer J Avian Dis; 1981; 25(1):53-67. PubMed ID: 6791628 [TBL] [Abstract][Full Text] [Related]
16. Purification of a new antifungal compound produced by Lactobacillus plantarum AF1 isolated from kimchi. Yang EJ; Chang HC Int J Food Microbiol; 2010 Apr; 139(1-2):56-63. PubMed ID: 20226553 [TBL] [Abstract][Full Text] [Related]
17. Sporminarins A and B: antifungal metabolites from a fungicolous isolate of Sporormiella minimoides. Mudur SV; Gloer JB; Wicklow DT J Antibiot (Tokyo); 2006 Aug; 59(8):500-6. PubMed ID: 17080687 [TBL] [Abstract][Full Text] [Related]
18. Inhibition of Aspergillus flavus colonization and aflatoxin (AfB1) in peanut by methyleugenol. Sudhakar P; Latha P; Sreenivasulu Y; Reddy BV; Hemalatha TM; Balakrishna M; Reddy KR Indian J Exp Biol; 2009 Jan; 47(1):63-7. PubMed ID: 19317354 [TBL] [Abstract][Full Text] [Related]
19. Comparison of the Sensititre YeastOne colorimetric antifungal panel with a modified NCCLS M38-A method to determine the activity of voriconazole against clinical isolates of Aspergillus spp. Castro C; Serrano MC; Flores B; Espinel-Ingroff A; Martín-Mazuelos E J Clin Microbiol; 2004 Sep; 42(9):4358-60. PubMed ID: 15365044 [TBL] [Abstract][Full Text] [Related]