These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

188 related articles for article (PubMed ID: 30956387)

  • 1. A diffusion-based approach for modelling crack tip behaviour under fatigue-oxidation conditions.
    Kashinga RJ; Zhao LG; Silberschmidt VV; Jiang R; Reed PAS
    Int J Fract; 2018; 213(2):157-170. PubMed ID: 30956387
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The Mechanism of Creep during Crack Propagation of a Superalloy under Fatigue-Creep-Environment Interactions.
    Wang M; Du J; Deng Q
    Materials (Basel); 2020 Oct; 13(19):. PubMed ID: 33020419
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of Residual Stresses on Fatigue Crack Growth: A Numerical Study Based on Cumulative Plastic Strain at the Crack Tip.
    Neto DM; Borges MF; Sérgio ER; Antunes FV
    Materials (Basel); 2022 Mar; 15(6):. PubMed ID: 35329608
    [TBL] [Abstract][Full Text] [Related]  

  • 4. FCG Modelling Considering the Combined Effects of Cyclic Plastic Deformation and Growth of Micro-Voids.
    Sérgio ER; Antunes FV; Borges MF; Neto DM
    Materials (Basel); 2021 Jul; 14(15):. PubMed ID: 34361497
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The Study on Fatigue Crack Growth Rate of 4130X Material under Different Hydrogen Corrosion Conditions.
    Jiang S; Wang J; Zhao B; Zhang E
    Materials (Basel); 2024 Jan; 17(1):. PubMed ID: 38204109
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Revisiting Classical Issues of Fatigue Crack Growth Using a Non-Linear Approach.
    Borges MF; Neto DM; Antunes FV
    Materials (Basel); 2020 Dec; 13(23):. PubMed ID: 33291754
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of Specimen Thickness and Stress Intensity Factor Range on Plasticity-Induced Fatigue Crack Closure in A7075-T6 Alloy.
    Masuda K; Ishihara S; Oguma N
    Materials (Basel); 2021 Jan; 14(3):. PubMed ID: 33572686
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Elasto-Plastic Fatigue Crack Growth Behavior of Extruded Mg Alloy with Deformation Anisotropy Due to Stress Ratio Fluctuation.
    Masuda K; Ishihara S; Oguma N; Ishiguro M; Sakamoto Y
    Materials (Basel); 2022 Jan; 15(3):. PubMed ID: 35160700
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Crack nucleation using combined crystal plasticity modelling, high-resolution digital image correlation and high-resolution electron backscatter diffraction in a superalloy containing non-metallic inclusions under fatigue.
    Zhang T; Jiang J; Britton B; Shollock B; Dunne F
    Proc Math Phys Eng Sci; 2016 May; 472(2189):20150792. PubMed ID: 27279765
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Prediction of Fatigue Crack Initiation of 7075 Aluminum Alloy by Crystal Plasticity Simulation.
    Shiraiwa T; Briffod F; Enoki M
    Materials (Basel); 2023 Feb; 16(4):. PubMed ID: 36837226
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Finite strain stress fields near the tip of an interface crack between a soft incompressible elastic material and a rigid substrate.
    Krishnan VR; Hui CY
    Eur Phys J E Soft Matter; 2009 May; 29(1):61-72. PubMed ID: 19437055
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Research on the Evolution Law Physical Short Fatigue Crack and Tip Deformation Fields during Crack Closure Process of the Q&P Steel.
    Shang H; Lin Z; Gao H; Shan X; Zhan J
    Materials (Basel); 2022 Aug; 15(16):. PubMed ID: 36013905
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An Empirical Approach to Correlating Thermo-Mechanical Fatigue Behaviour of a Polycrystalline Ni-Base Superalloy.
    Whittaker M; Lancaster R; Harrison W; Pretty C; Williams S
    Materials (Basel); 2013 Nov; 6(11):5275-5290. PubMed ID: 28788389
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of the Crack Tip Bifurcation on the Plasticity-Induced Fatigue Propagation in Metallic Materials.
    Toribio J; González B; Matos JC
    Materials (Basel); 2021 Jun; 14(12):. PubMed ID: 34207304
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fatigue Crack Arrest Induced by Localized Compressive Deformation.
    Barragán ER; Ambriz RR; Frutos JA; García CJ; Gómora CM; Jaramillo D
    Materials (Basel); 2022 Jun; 15(13):. PubMed ID: 35806676
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Finite deformation near a crack tip terminated at an interface between two neo-Hookean sheets.
    Mo C; Raney JR; Bassani JL
    J Mech Phys Solids; 2022 Jan; 158():. PubMed ID: 35418713
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A Concise Binomial Model for Nonlinear Creep-Fatigue Crack Growth Behavior at Elevated Temperatures.
    Mao J; Xiao Z; Hu D; Guo X; Wang R
    Materials (Basel); 2022 Jan; 15(2):. PubMed ID: 35057367
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comparative modelling of crack propagation in elastic-plastic materials using the meshfree local radial basis point interpolation method and eXtended finite-element method.
    Li Y; Xu N; Tu J; Mei G
    R Soc Open Sci; 2019 Nov; 6(11):190543. PubMed ID: 31827821
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Investigation of Plasticity Effects on Growing Fatigue Cracks Using the CJP Model of Crack Tip Fields.
    Vasco-Olmo JM; Camacho-Reyes A; Gómez Gonzales GL; Díaz F
    Materials (Basel); 2023 Aug; 16(17):. PubMed ID: 37687437
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Microstructural changes induced near crack tip during corrosion fatigue tests in austenitic-ferritic steel.
    Gołebiowski B; Swiatnicki WA; Gaspérini M
    J Microsc; 2010 Mar; 237(3):352-8. PubMed ID: 20500395
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.