These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

104 related articles for article (PubMed ID: 30956397)

  • 1. A computational study of global optimization solvers on two trust region subproblems.
    Montanher T; Neumaier A; Domes F
    J Glob Optim; 2018; 71(4):915-934. PubMed ID: 30956397
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A computational study of exact subgraph based SDP bounds for Max-Cut, stable set and coloring.
    Gaar E; Rendl F
    Math Program; 2020; 183(1):283-308. PubMed ID: 32863433
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Large-Scale Binary Quadratic Optimization Using Semidefinite Relaxation and Applications.
    Wang P; Shen C; Hengel AV; Torr PH
    IEEE Trans Pattern Anal Mach Intell; 2017 Mar; 39(3):470-485. PubMed ID: 26978557
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Worst case linear discriminant analysis as scalable semidefinite feasibility problems.
    Hui Li ; Chunhua Shen ; van den Hengel A; Qinfeng Shi
    IEEE Trans Image Process; 2015 Aug; 24(8):2382-92. PubMed ID: 25675458
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Certifiably Optimal Outlier-Robust Geometric Perception: Semidefinite Relaxations and Scalable Global Optimization.
    Yang H; Carlone L
    IEEE Trans Pattern Anal Mach Intell; 2023 Mar; 45(3):2816-2834. PubMed ID: 35639680
    [TBL] [Abstract][Full Text] [Related]  

  • 6. An SDP-based approach for computing the stability number of a graph.
    Gaar E; Siebenhofer M; Wiegele A
    Math Methods Oper Res (Heidelb); 2022; 95(1):141-161. PubMed ID: 35401044
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Efficient semidefinite spectral clustering via lagrange duality.
    Yan Y; Shen C; Wang H
    IEEE Trans Image Process; 2014 Aug; 23(8):3522-34. PubMed ID: 24951690
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Determining protein structures from NOESY distance constraints by semidefinite programming.
    Alipanahi B; Krislock N; Ghodsi A; Wolkowicz H; Donaldson L; Li M
    J Comput Biol; 2013 Apr; 20(4):296-310. PubMed ID: 23113706
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Phase transitions in semidefinite relaxations.
    Javanmard A; Montanari A; Ricci-Tersenghi F
    Proc Natl Acad Sci U S A; 2016 Apr; 113(16):E2218-23. PubMed ID: 27001856
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Efficient hyperkernel learning using second-order cone programming.
    Tsang IW; Kwok JT
    IEEE Trans Neural Netw; 2006 Jan; 17(1):48-58. PubMed ID: 16526475
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Facial reduction for symmetry reduced semidefinite and doubly nonnegative programs.
    Hu H; Sotirov R; Wolkowicz H
    Math Program; 2023; 200(1):475-529. PubMed ID: 37215307
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Low-Rank Matrix Learning Using Biconvex Surrogate Minimization.
    Hu EL; Kwok JT
    IEEE Trans Neural Netw Learn Syst; 2019 Nov; 30(11):3517-3527. PubMed ID: 31403443
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Quantitative analysis of numerical solvers for oscillatory biomolecular system models.
    Quo CF; Wang MD
    BMC Bioinformatics; 2008 May; 9 Suppl 6(Suppl 6):S17. PubMed ID: 18541052
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An Efficient Solution to Non-Minimal Case Essential Matrix Estimation.
    Zhao J
    IEEE Trans Pattern Anal Mach Intell; 2022 Apr; 44(4):1777-1792. PubMed ID: 33044931
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Linear time maximum margin clustering.
    Wang F; Zhao B; Zhang C
    IEEE Trans Neural Netw; 2010 Feb; 21(2):319-32. PubMed ID: 20083456
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A Novel Method for Asynchronous Time-of-Arrival-Based Source Localization: Algorithms, Performance and Complexity.
    Chen Y; Yao Z; Peng Z
    Sensors (Basel); 2020 Jun; 20(12):. PubMed ID: 32575469
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A Neurodynamic Optimization Approach to Bilevel Quadratic Programming.
    Qin S; Le X; Wang J
    IEEE Trans Neural Netw Learn Syst; 2017 Nov; 28(11):2580-2591. PubMed ID: 28113639
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Helper and Equivalent Objectives: Efficient Approach for Constrained Optimization.
    Xu T; He J; Shang C
    IEEE Trans Cybern; 2022 Jan; 52(1):240-251. PubMed ID: 32224478
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fast interior point solution of quadratic programming problems arising from PDE-constrained optimization.
    Pearson JW; Gondzio J
    Numer Math (Heidelb); 2017; 137(4):959-999. PubMed ID: 29151623
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Energy Efficiency Maximization for Multi-Cell Multi-Carrier NOMA Networks.
    Adam ABM; Wan X; Wang Z
    Sensors (Basel); 2020 Nov; 20(22):. PubMed ID: 33233505
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.