These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
132 related articles for article (PubMed ID: 30956507)
1. An In Situ XAS Study of the Cobalt Rhenium Catalyst for Ammonia Synthesis. Mathisen K; Kirste KG; Hargreaves JSJ; Laassiri S; McAulay K; McFarlane AR; Spencer NA Top Catal; 2018; 61(3):225-239. PubMed ID: 30956507 [TBL] [Abstract][Full Text] [Related]
2. XAS investigation of silica aerogel supported cobalt rhenium catalysts for ammonia decomposition. Kirste KG; Laassiri S; Hu Z; Stoian D; Torrente-Murciano L; Hargreaves JSJ; Mathisen K Phys Chem Chem Phys; 2020 Sep; 22(34):18932-18949. PubMed ID: 32567607 [TBL] [Abstract][Full Text] [Related]
3. Combined in situ XRD and in situ XANES studies on the reduction behavior of a rhenium promoted cobalt catalyst. Kumar N; Payzant EA; Jothimurugesan K; Spivey JJ Phys Chem Chem Phys; 2011 Aug; 13(32):14735-41. PubMed ID: 21743918 [TBL] [Abstract][Full Text] [Related]
4. Preparation of Highly Active Monometallic Rhenium Catalysts for Selective Synthesis of 1,4-Butanediol from 1,4-Anhydroerythritol. Wang T; Tamura M; Nakagawa Y; Tomishige K ChemSusChem; 2019 Aug; 12(15):3615-3626. PubMed ID: 31134740 [TBL] [Abstract][Full Text] [Related]
5. Facile use of coal combustion fly ash (CCFA) as Ni-Re bimetallic catalyst support for high-performance CO Dong X; Jin B; Cao S; Meng F; Chen T; Ding Q; Tong C Waste Manag; 2020 Apr; 107():244-251. PubMed ID: 32320937 [TBL] [Abstract][Full Text] [Related]
6. Photocatalytic H2 production from water with rhenium and cobalt complexes. Probst B; Guttentag M; Rodenberg A; Hamm P; Alberto R Inorg Chem; 2011 Apr; 50(8):3404-12. PubMed ID: 21366324 [TBL] [Abstract][Full Text] [Related]
7. Fischer-Tropsch synthesis: study of the promotion of Pt on the reduction property of Co/Al2O3 catalysts by in situ EXAFS of Co K and Pt LIII edges and XPS. Jacobs G; Chaney JA; Patterson PM; Das TK; Maillot JC; Davis BH J Synchrotron Radiat; 2004 Sep; 11(Pt 5):414-22. PubMed ID: 15310958 [TBL] [Abstract][Full Text] [Related]
8. Experimental and theoretical studies of ammonia generation: Reactions of H2 with neutral cobalt nitride clusters. Yin S; Xie Y; Bernstein ER J Chem Phys; 2012 Sep; 137(12):124304. PubMed ID: 23020328 [TBL] [Abstract][Full Text] [Related]
9. Evidence of highly active cobalt oxide catalyst for the Fischer-Tropsch synthesis and CO2 hydrogenation. Melaet G; Ralston WT; Li CS; Alayoglu S; An K; Musselwhite N; Kalkan B; Somorjai GA J Am Chem Soc; 2014 Feb; 136(6):2260-3. PubMed ID: 24460136 [TBL] [Abstract][Full Text] [Related]
10. Unlocking the Potential of MXene in Catalysis: Decorated Mo Sfeir A; Shuck CE; Fadel A; Marinova M; Vezin H; Dacquin JP; Gogotsi Y; Royer S; Laassiri S J Am Chem Soc; 2024 Jul; 146(29):20033-20044. PubMed ID: 38996197 [TBL] [Abstract][Full Text] [Related]
11. X-ray absorption spectroscopy of Mn/Co/TiO2 Fischer-Tropsch catalysts: relationships between preparation method, molecular structure, and catalyst performance. Morales F; Grandjean D; Mens A; de Groot FM; Weckhuysen BM J Phys Chem B; 2006 May; 110(17):8626-39. PubMed ID: 16640417 [TBL] [Abstract][Full Text] [Related]
12. Insight into dynamic and steady-state active sites for nitrogen activation to ammonia by cobalt-based catalyst. Wang X; Peng X; Chen W; Liu G; Zheng A; Zheng L; Ni J; Au CT; Jiang L Nat Commun; 2020 Jan; 11(1):653. PubMed ID: 32005833 [TBL] [Abstract][Full Text] [Related]
13. Dual reactor for in situ/operando fluorescent mode XAS studies of sample containing low-concentration 3d or 5d metal elements. Nguyen L; Tang Y; Li Y; Zhang X; Wang D; Tao FF Rev Sci Instrum; 2018 May; 89(5):054103. PubMed ID: 29864830 [TBL] [Abstract][Full Text] [Related]
14. Structural dynamics of an iron molybdate catalyst under redox cycling conditions studied with in situ multi edge XAS and XRD. Gaur A; Stehle M; Raun KV; Thrane J; Jensen AD; Grunwaldt JD; Høj M Phys Chem Chem Phys; 2020 May; 22(20):11713-11723. PubMed ID: 32407426 [TBL] [Abstract][Full Text] [Related]
15. A hexadentate bis(thiosemicarbazonato) ligand: rhenium(V), iron(III) and cobalt(III) complexes. Paterson BM; White JM; Donnelly PS Dalton Trans; 2010 Mar; 39(11):2831-7. PubMed ID: 20200709 [TBL] [Abstract][Full Text] [Related]
16. Reductive Amination of Aldehyde and Ketone with Ammonia and H Zhang S; Hu Y; Li M; Xie Y Org Lett; 2024 Aug; 26(34):7122-7127. PubMed ID: 39166977 [TBL] [Abstract][Full Text] [Related]
17. Synergistic Catalysis of the Synthesis of Ammonia with Co-Based Catalysts and Plasma: From Nanoparticles to a Single Atom. Li X; Jiao Y; Cui Y; Dai C; Ren P; Song C; Ma X ACS Appl Mater Interfaces; 2021 Nov; 13(44):52498-52507. PubMed ID: 34714629 [TBL] [Abstract][Full Text] [Related]
18. Highly loaded bimetallic iron-cobalt catalysts for hydrogen release from ammonia. Chen S; Jelic J; Rein D; Najafishirtari S; Schmidt FP; Girgsdies F; Kang L; Wandzilak A; Rabe A; Doronkin DE; Wang J; Friedel Ortega K; DeBeer S; Grunwaldt JD; Schlögl R; Lunkenbein T; Studt F; Behrens M Nat Commun; 2024 Jan; 15(1):871. PubMed ID: 38286982 [TBL] [Abstract][Full Text] [Related]
19. In situ X-ray emission and high-resolution X-ray absorption spectroscopy applied to Ni-based bimetallic dry methane reforming catalysts. Beheshti Askari A; Al Samarai M; Hiraoka N; Ishii H; Tillmann L; Muhler M; DeBeer S Nanoscale; 2020 Jul; 12(28):15185-15192. PubMed ID: 32657291 [TBL] [Abstract][Full Text] [Related]
20. Altering the rate-determining step over cobalt single clusters leading to highly efficient ammonia synthesis. Liu S; Wang M; Ji H; Shen X; Yan C; Qian T Natl Sci Rev; 2021 May; 8(5):nwaa136. PubMed ID: 34691629 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]