BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

181 related articles for article (PubMed ID: 30956509)

  • 1. Hydrogen Generation from Additive-Free Formic Acid Decomposition Under Mild Conditions by Pd/C: Experimental and DFT Studies.
    Sanchez F; Motta D; Roldan A; Hammond C; Villa A; Dimitratos N
    Top Catal; 2018; 61(3):254-266. PubMed ID: 30956509
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Pd
    Lee WJ; Hwang YJ; Kim J; Jeong H; Yoon CW
    Chemphyschem; 2019 May; 20(10):1382-1391. PubMed ID: 30706621
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Achieving Ultra-High Selectivity to Hydrogen Production from Formic Acid on Pd-Ag Alloys.
    Karatok M; Ngan HT; Jia X; O'Connor CR; Boscoboinik JA; Stacchiola DJ; Sautet P; Madix RJ
    J Am Chem Soc; 2023 Mar; 145(9):5114-5124. PubMed ID: 36848504
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dehydrogenation of Formic Acid at Room Temperature: Boosting Palladium Nanoparticle Efficiency by Coupling with Pyridinic-Nitrogen-Doped Carbon.
    Bi QY; Lin JD; Liu YM; He HY; Huang FQ; Cao Y
    Angew Chem Int Ed Engl; 2016 Sep; 55(39):11849-53. PubMed ID: 27552650
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Chromic hydroxide-decorated palladium nanoparticles confined by amine-functionalized mesoporous silica for rapid dehydrogenation of formic acid.
    Ding Y; Peng W; Zhang L; Xia J; Feng G; Lu ZH
    J Colloid Interface Sci; 2023 Jan; 630(Pt A):879-887. PubMed ID: 36306599
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Pd-C Catalytic Thin Films Prepared by Magnetron Sputtering for the Decomposition of Formic Acid.
    Arzac GM; Fernández A; Godinho V; Hufschmidt D; Jiménez de Haro MC; Medrán B; Montes O
    Nanomaterials (Basel); 2021 Sep; 11(9):. PubMed ID: 34578642
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Boron nitride nanosheets supported highly homogeneous bimetallic AuPd alloy nanoparticles catalyst for hydrogen production from formic acid.
    Shaybanizadeh S; Najafi Chermahini A; Luque R
    Nanotechnology; 2022 Apr; 33(27):. PubMed ID: 35294941
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A Process for Hydrogen Production from the Catalytic Decomposition of Formic Acid over Iridium-Palladium Nanoparticles.
    Alshammari HM; Alotaibi MH; Aldosari OF; Alsolami AS; Alotaibi NA; Alzahrani YA; Alhumaimess MS; Alotaibi RL; El-Hiti GA
    Materials (Basel); 2021 Jun; 14(12):. PubMed ID: 34204765
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Superior activity of Pd nanoparticles confined in carbon nanotubes for hydrogen production from formic acid decomposition at ambient temperature.
    Ding TY; Zhao ZG; Ran MF; Yang YY
    J Colloid Interface Sci; 2019 Mar; 538():474-480. PubMed ID: 30537660
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Anchoring Pd-nanoparticles on dithiocarbamate- functionalized SBA-15 for hydrogen generation from formic acid.
    Farajzadeh M; Alamgholiloo H; Nasibipour F; Banaei R; Rostamnia S
    Sci Rep; 2020 Oct; 10(1):18188. PubMed ID: 33097804
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Zeolite-Encaged Pd-Mn Nanocatalysts for CO
    Sun Q; Chen BWJ; Wang N; He Q; Chang A; Yang CM; Asakura H; Tanaka T; Hülsey MJ; Wang CH; Yu J; Yan N
    Angew Chem Int Ed Engl; 2020 Nov; 59(45):20183-20191. PubMed ID: 32770613
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hydrogen Evolution from Additive-Free Formic Acid Dehydrogenation Using Weakly Basic Resin-Supported Pd Catalyst.
    Li L; Chen X; Zhang C; Zhang G; Liu Z
    ACS Omega; 2022 May; 7(17):14944-14951. PubMed ID: 35557660
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A Palladium Catalyst Supported on Boron-Doped Porous Carbon for Efficient Dehydrogenation of Formic Acid.
    Liu H; Huang M; Tao W; Han L; Zhang J; Zhao Q
    Nanomaterials (Basel); 2024 Mar; 14(6):. PubMed ID: 38535697
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Improving the Performance of Pd for Formic Acid Dehydrogenation by Introducing Barium Titanate.
    Wang J; Guo J; Zhou Q; Hu S; Zhang X
    ACS Appl Mater Interfaces; 2024 Apr; 16(15):18713-18721. PubMed ID: 38568896
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Decomposition of formic acid using tungsten(VI) oxide supported AgPd nanoparticles.
    Akbayrak S
    J Colloid Interface Sci; 2019 Mar; 538():682-688. PubMed ID: 30591196
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Pd/C synthesized with citric acid: an efficient catalyst for hydrogen generation from formic acid/sodium formate.
    Wang ZL; Yan JM; Wang HL; Ping Y; Jiang Q
    Sci Rep; 2012; 2():598. PubMed ID: 22953041
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Iron-catalyzed hydrogen production from formic acid.
    Boddien A; Loges B; Gärtner F; Torborg C; Fumino K; Junge H; Ludwig R; Beller M
    J Am Chem Soc; 2010 Jul; 132(26):8924-34. PubMed ID: 20550131
    [TBL] [Abstract][Full Text] [Related]  

  • 18. In Situ Confinement of Ultrasmall Pd Clusters within Nanosized Silicalite-1 Zeolite for Highly Efficient Catalysis of Hydrogen Generation.
    Wang N; Sun Q; Bai R; Li X; Guo G; Yu J
    J Am Chem Soc; 2016 Jun; 138(24):7484-7. PubMed ID: 27248462
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Immobilization of palladium silver nanoparticles on NH
    Han J; Zhang Z; Hao Z; Li G; Liu T
    J Colloid Interface Sci; 2021 Apr; 587():736-742. PubMed ID: 33223240
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Surfactant-Free Synthesis of Carbon-Supported Palladium Nanoparticles and Size-Dependent Hydrogen Production from Formic Acid-Formate Solution.
    Zhang S; Jiang B; Jiang K; Cai WB
    ACS Appl Mater Interfaces; 2017 Jul; 9(29):24678-24687. PubMed ID: 28658569
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.