These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

183 related articles for article (PubMed ID: 30956509)

  • 21. Surfactant-Free Synthesis of Carbon-Supported Palladium Nanoparticles and Size-Dependent Hydrogen Production from Formic Acid-Formate Solution.
    Zhang S; Jiang B; Jiang K; Cai WB
    ACS Appl Mater Interfaces; 2017 Jul; 9(29):24678-24687. PubMed ID: 28658569
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Formate dehydrogenase activity by a Cu(II)-based molecular catalyst and deciphering the mechanism using DFT studies.
    Mishra A; Srivastava D; Raj D; Patra N; Padhi SK
    Dalton Trans; 2024 Jan; 53(3):1209-1220. PubMed ID: 38108489
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Surface Engineering of a Supported PdAg Catalyst for Hydrogenation of CO
    Mori K; Sano T; Kobayashi H; Yamashita H
    J Am Chem Soc; 2018 Jul; 140(28):8902-8909. PubMed ID: 29932642
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Computational Studies on Microreactors for the Decomposition of Formic Acid for Hydrogen Production Using Heterogeneous Catalysts.
    Harkou E; Adamou P; Georgiou K; Hafeez S; Al-Salem SM; Villa A; Manos G; Dimitratos N; Constantinou A
    Molecules; 2023 Jul; 28(14):. PubMed ID: 37513271
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Highly Efficient Additive-Free Dehydrogenation of Neat Formic Acid.
    Kar S; Rauch M; Leitus G; Ben-David Y; Milstein D
    Nat Catal; 2021 Mar; 4():193-201. PubMed ID: 37152186
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Anchoring and Upgrading Ultrafine NiPd on Room-Temperature-Synthesized Bifunctional NH
    Yan JM; Li SJ; Yi SS; Wulan BR; Zheng WT; Jiang Q
    Adv Mater; 2018 Mar; 30(12):e1703038. PubMed ID: 29411459
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Efficient disproportionation of formic acid to methanol using molecular ruthenium catalysts.
    Savourey S; Lefèvre G; Berthet JC; Thuéry P; Genre C; Cantat T
    Angew Chem Int Ed Engl; 2014 Sep; 53(39):10466-70. PubMed ID: 25088282
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The superiority of Pd
    Wang Y; Dong M; Li S; Chen B; Liu H; Han B
    Chem Sci; 2024 Apr; 15(15):5525-5530. PubMed ID: 38638229
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Surface Modification on Pd-TiO
    Liu P; Cai Z; You Y; Huang H; Chen S; Gao C; Qi Z; Long R; Zhu J; Song L; Xiong Y
    Chemistry; 2018 Dec; 24(69):18398-18402. PubMed ID: 30102805
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Metal-Nanoparticle-Catalyzed Hydrogen Generation from Formic Acid.
    Li Z; Xu Q
    Acc Chem Res; 2017 Jun; 50(6):1449-1458. PubMed ID: 28525274
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Selective and controlled H
    Zhang Q; Wang Y; Jin X; Liu X
    Nanoscale; 2023 Oct; 15(39):15975-15981. PubMed ID: 37782093
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Selective hydrogen production from formic acid decomposition on Pd-Au bimetallic surfaces.
    Yu WY; Mullen GM; Flaherty DW; Mullins CB
    J Am Chem Soc; 2014 Aug; 136(31):11070-8. PubMed ID: 25019609
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Catalytic Reactions on Pd-Au Bimetallic Model Catalysts.
    Han S; Mullins CB
    Acc Chem Res; 2021 Jan; 54(2):379-387. PubMed ID: 33371669
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Experimental and Theoretical Studies of Ultrafine Pd-Based Biochar Catalyst for Dehydrogenation of Formic Acid and Application of In Situ Hydrogenation.
    Zou L; Liu Q; Zhu D; Huang Y; Mao Y; Luo X; Liang Z
    ACS Appl Mater Interfaces; 2022 Apr; 14(15):17282-17295. PubMed ID: 35389607
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Carbon-coated silica supported palladium for hydrogen production from formic acid - Exploring the influence of strong metal support interaction.
    Guo J; Hu S; Gao Z; Zhang X; Sun S
    J Colloid Interface Sci; 2024 Mar; 658():468-475. PubMed ID: 38118193
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Dehydrogenation of Formic Acid Catalyzed by a Ruthenium Complex with an N,N'-Diimine Ligand.
    Guan C; Zhang DD; Pan Y; Iguchi M; Ajitha MJ; Hu J; Li H; Yao C; Huang MH; Min S; Zheng J; Himeda Y; Kawanami H; Huang KW
    Inorg Chem; 2017 Jan; 56(1):438-445. PubMed ID: 27983821
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Mechanistic insights into the dehydrogenation of formaldehyde, formic acid and methanol using the Pt
    Phan TT; Dao LTT; Giang LPT; Nguyen MT; Nguyen HMT
    J Mol Graph Model; 2022 Mar; 111():108096. PubMed ID: 34875503
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Single-Site Ruthenium Pincer Complex Knitted into Porous Organic Polymers for Dehydrogenation of Formic Acid.
    Wang X; Ling EAP; Guan C; Zhang Q; Wu W; Liu P; Zheng N; Zhang D; Lopatin S; Lai Z; Huang KW
    ChemSusChem; 2018 Oct; 11(20):3591-3598. PubMed ID: 30207639
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Effect of the ortho-Hydroxyl Groups on a Bipyridine Ligand of Iridium Complexes for the High-Pressure Gas Generation from the Catalytic Decomposition of Formic Acid.
    Iguchi M; Zhong H; Himeda Y; Kawanami H
    Chemistry; 2017 Dec; 23(70):17788-17793. PubMed ID: 28960487
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Preparation of Pd-Co-based nanocatalysts and their superior applications in formic acid decomposition and methanol oxidation.
    Qin YL; Liu YC; Liang F; Wang LM
    ChemSusChem; 2015 Jan; 8(2):260-3. PubMed ID: 25504901
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.