These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 30956509)

  • 41. Formic Acid Dehydrogenation over Ru- and Pd-Based Catalysts: Gas- vs. Liquid-Phase Reactions.
    Ruiz-López E; Ribota Peláez M; Blasco Ruz M; Domínguez Leal MI; Martínez Tejada M; Ivanova S; Centeno MÁ
    Materials (Basel); 2023 Jan; 16(2):. PubMed ID: 36676208
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Electrocatalysis of formic acid on palladium and platinum surfaces: from fundamental mechanisms to fuel cell applications.
    Jiang K; Zhang HX; Zou S; Cai WB
    Phys Chem Chem Phys; 2014 Oct; 16(38):20360-76. PubMed ID: 25144896
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Hydrogenation of CO
    Gelman-Tropp S; Kirillov E; Hey-Hawkins E; Gelman D
    Chemistry; 2023 Nov; 29(63):e202301915. PubMed ID: 37602815
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Efficient Hydrogen Storage and Production Using a Catalyst with an Imidazoline-Based, Proton-Responsive Ligand.
    Wang L; Onishi N; Murata K; Hirose T; Muckerman JT; Fujita E; Himeda Y
    ChemSusChem; 2017 Mar; 10(6):1071-1075. PubMed ID: 27860395
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Hydrogen Production from Formic Acid by In Situ Generated Ni/CdS Photocatalytic System under Visible Light Irradiation.
    Feng KW; Li Y
    ChemSusChem; 2023 May; 16(9):e202202250. PubMed ID: 36705939
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Combining Computational Modeling with Reaction Kinetics Experiments for Elucidating the
    Bhandari S; Rangarajan S; Mavrikakis M
    Acc Chem Res; 2020 Sep; 53(9):1893-1904. PubMed ID: 32869965
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Yolk-shell silica dioxide spheres @ metal-organic framework immobilized Ni/Mo nanoparticles as an effective catalyst for formic acid dehydrogenation at low temperature.
    Prabu S; Chiang KY
    J Colloid Interface Sci; 2021 Dec; 604():584-595. PubMed ID: 34280756
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Reaction-driven selective CO
    Zhang H; Wang X; Liu P
    Phys Chem Chem Phys; 2022 Jul; 24(28):16997-17003. PubMed ID: 35730189
    [TBL] [Abstract][Full Text] [Related]  

  • 49. PdAg Nanoparticles within Core-Shell Structured Zeolitic Imidazolate Framework as a Dual Catalyst for Formic Acid-based Hydrogen Storage/Production.
    Wen M; Mori K; Futamura Y; Kuwahara Y; Navlani-García M; An T; Yamashita H
    Sci Rep; 2019 Oct; 9(1):15675. PubMed ID: 31666596
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Sustainable Low-Temperature Hydrogen Production from Lignocellulosic Biomass Passing through Formic Acid: Combination of Biomass Hydrolysis/Oxidation and Formic Acid Dehydrogenation.
    Park JH; Jin MH; Lee DW; Lee YJ; Song GS; Park SJ; Namkung H; Song KH; Choi YC
    Environ Sci Technol; 2019 Dec; 53(23):14041-14053. PubMed ID: 31602972
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Mechanistic insights on ethanol dehydrogenation on Pd-Au model catalysts: a combined experimental and DFT study.
    Evans EJ; Li H; Yu WY; Mullen GM; Henkelman G; Mullins CB
    Phys Chem Chem Phys; 2017 Nov; 19(45):30578-30589. PubMed ID: 29115318
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Enhanced Catalytic Performance of N-Doped Carbon Sphere-Supported Pd Nanoparticles by Secondary Nitrogen Source Regulation for Formic Acid Dehydrogenation.
    Deng M; Yang A; Ma J; Yang C; Cao T; Yang S; Yao M; Liu F; Wang X; Cao J
    ACS Appl Mater Interfaces; 2022 Apr; 14(16):18550-18560. PubMed ID: 35412790
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Synergistic Combination of Fermi Level Equilibrium and Plasmonic Effect for Formic Acid Dehydrogenation.
    Zhu J; Huang J; Dai J; Jiang L; Xu Y; Chen R; Li L; Fu X; Wang Z; Liu H; Li G
    ChemSusChem; 2023 Mar; 16(6):e202202069. PubMed ID: 36537011
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Catalytic Semi-Water-Gas Shift Reaction: A Simple Green Path to Formic Acid Fuel.
    Qadir MI; Castegnaro MV; Selau FF; Samperi M; Fernandes JA; Morais J; Dupont J
    ChemSusChem; 2020 Apr; 13(7):1817-1824. PubMed ID: 32022428
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Hydrogenation of CO
    Zhang L; Pu M; Lei M
    Dalton Trans; 2021 Jun; 50(21):7348-7355. PubMed ID: 33960356
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Synergic Catalysis of PdCu Alloy Nanoparticles within a Macroreticular Basic Resin for Hydrogen Production from Formic Acid.
    Mori K; Tanaka H; Dojo M; Yoshizawa K; Yamashita H
    Chemistry; 2015 Aug; 21(34):12085-92. PubMed ID: 26178687
    [TBL] [Abstract][Full Text] [Related]  

  • 57. High-density defects on PdAg nanowire networks as catalytic hot spots for efficient dehydrogenation of formic acid and reduction of nitrate.
    Liu H; Yu Y; Yang W; Lei W; Gao M; Guo S
    Nanoscale; 2017 Jul; 9(27):9305-9309. PubMed ID: 28678238
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Natural DNA-modified graphene/Pd nanoparticles as highly active catalyst for formic acid electro-oxidation and for the Suzuki reaction.
    Qu K; Wu L; Ren J; Qu X
    ACS Appl Mater Interfaces; 2012 Sep; 4(9):5001-9. PubMed ID: 22973944
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Modulating oxygen coverage of Ti
    Hou T; Luo Q; Li Q; Zu H; Cui P; Chen S; Lin Y; Chen J; Zheng X; Zhu W; Liang S; Yang J; Wang L
    Nat Commun; 2020 Aug; 11(1):4251. PubMed ID: 32843636
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Amine-Functionalized Carbon Bowl-Supported Pd-La(OH)
    Sun X; Zhang G; Yao Q; Li H; Feng G; Lu ZH
    Inorg Chem; 2022 Nov; 61(45):18102-18111. PubMed ID: 36325636
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.