These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 30956752)

  • 1. M-MRI: A Manifold-based Framework to Highly Accelerated Dynamic Magnetic Resonance Imaging.
    Nakarmi U; Slavakis K; Lyu J; Ying L
    Proc IEEE Int Symp Biomed Imaging; 2017 Apr; 2017():19-22. PubMed ID: 30956752
    [TBL] [Abstract][Full Text] [Related]  

  • 2. MLS: Joint Manifold-Learning and Sparsity-Aware Framework for Highly Accelerated Dynamic Magnetic Resonance Imaging.
    Nakarmi U; Slavakis K; Ying L
    Proc IEEE Int Symp Biomed Imaging; 2018 Apr; 2018():1213-1216. PubMed ID: 31007840
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A Kernel-Based Low-Rank (KLR) Model for Low-Dimensional Manifold Recovery in Highly Accelerated Dynamic MRI.
    Nakarmi U; Wang Y; Lyu J; Liang D; Ying L
    IEEE Trans Med Imaging; 2017 Nov; 36(11):2297-2307. PubMed ID: 28692970
    [TBL] [Abstract][Full Text] [Related]  

  • 4. qModeL: A plug-and-play model-based reconstruction for highly accelerated multi-shot diffusion MRI using learned priors.
    Mani M; Magnotta VA; Jacob M
    Magn Reson Med; 2021 Aug; 86(2):835-851. PubMed ID: 33759240
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Bi-Linear Modeling of Manifold-Data Geometry for Dynamic-MRI Recovery.
    Slavakis K; Shetty GN; Bose A; Nakarmi U; Ying L
    Int Workshop Comput Adv Multisens Adapt Process; 2017 Dec; 2017():. PubMed ID: 31763626
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Accelerated dynamic MR imaging with joint balanced low-rank tensor and sparsity constraints.
    He J; Mi C; Liu X; Zhao Y
    Med Phys; 2023 Sep; 50(9):5434-5448. PubMed ID: 37378868
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A geometric framework for ensemble average propagator reconstruction from diffusion MRI.
    Vemuri BC; Sun J; Banerjee M; Pan Z; Turner SM; Fuller DD; Forder JR; Entezari A
    Med Image Anal; 2019 Oct; 57():89-105. PubMed ID: 31295681
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Manifold Learning via Linear Tangent Space Alignment (LTSA) for Accelerated Dynamic MRI With Sparse Sampling.
    Djebra Y; Marin T; Han PK; Bloch I; Fakhri GE; Ma C
    IEEE Trans Med Imaging; 2023 Jan; 42(1):158-169. PubMed ID: 36121938
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Bi-Linear Modeling of Data Manifolds for Dynamic-MRI Recovery.
    Shetty GN; Slavakis K; Bose A; Nakarmi U; Scutari G; Ying L
    IEEE Trans Med Imaging; 2020 Mar; 39(3):688-702. PubMed ID: 31403408
    [TBL] [Abstract][Full Text] [Related]  

  • 10. CS-MRI reconstruction based on analysis dictionary learning and manifold structure regularization.
    Cao J; Liu S; Liu H; Lu H
    Neural Netw; 2020 Mar; 123():217-233. PubMed ID: 31884182
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Compressed sensing MRI based on image decomposition model and group sparsity.
    Fan X; Lian Q; Shi B
    Magn Reson Imaging; 2019 Jul; 60():101-109. PubMed ID: 30910695
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dynamic MRI Using SmooThness Regularization on Manifolds (SToRM).
    Poddar S; Jacob M
    IEEE Trans Med Imaging; 2016 Apr; 35(4):1106-15. PubMed ID: 26685228
    [TBL] [Abstract][Full Text] [Related]  

  • 13. ACCELERATING DYNAMIC MAGNETIC RESONANCE IMAGING BY NONLINEAR SPARSE CODING.
    Nakarmi U; Zhou Y; Lyu J; Slavakis K; Ying L
    Proc IEEE Int Symp Biomed Imaging; 2016 Apr; 2016():510-513. PubMed ID: 31709030
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Manifold recovery using kernel low-rank regularization: application to dynamic imaging.
    Poddar S; Mohsin YQ; Ansah D; Thattaliyath B; Ashwath R; Jacob M
    IEEE Trans Comput Imaging; 2019 Sep; 5(3):478-491. PubMed ID: 33768137
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Riemannian manifold learning.
    Lin T; Zha H
    IEEE Trans Pattern Anal Mach Intell; 2008 May; 30(5):796-809. PubMed ID: 18369250
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Motion-adaptive spatio-temporal regularization for accelerated dynamic MRI.
    Asif MS; Hamilton L; Brummer M; Romberg J
    Magn Reson Med; 2013 Sep; 70(3):800-12. PubMed ID: 23132400
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Compressive manifold learning: estimating one-dimensional respiratory motion directly from undersampled k-space data.
    Usman M; Vaillant G; Atkinson D; Schaeffter T; Prieto C
    Magn Reson Med; 2014 Oct; 72(4):1130-40. PubMed ID: 24357143
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Low-rank plus sparse joint smoothing model based on tensor singular value decomposition for dynamic MRI reconstruction.
    Liu X; He J; Mi C; Zhang X
    Magn Reson Imaging; 2023 Dec; 104():52-60. PubMed ID: 37741515
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Exploiting structural redundancy in q-space for improved EAP reconstruction from highly undersampled (k, q)-space in DMRI.
    Sun J; Entezari A; Vemuri BC
    Med Image Anal; 2019 May; 54():122-137. PubMed ID: 30903964
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A joint space-angle regularization approach for single 4D diffusion image super-resolution.
    Yin S; You X; Yang X; Peng Q; Zhu Z; Jing XY
    Magn Reson Med; 2018 Nov; 80(5):2173-2187. PubMed ID: 29672917
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.