These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

109 related articles for article (PubMed ID: 30957265)

  • 1. Using genotyping-by-sequencing to predict gender in animals.
    Bilton TP; Chappell AJ; Clarke SM; Brauning R; Dodds KG; McEwan JC; Rowe SJ
    Anim Genet; 2019 Jun; 50(3):307-310. PubMed ID: 30957265
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Development of Diagnostic SNP Markers To Monitor Hybridization Between Sika Deer (
    Ba H; Li Z; Yang Y; Li C
    G3 (Bethesda); 2018 Jul; 8(7):2173-2179. PubMed ID: 29789312
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Characteristics of X- and Y-chromosome specific regions of the amelogenin gene and a PCR-based method for sex identification in red deer (Cervus elaphus).
    Gurgul A; Radko A; Słota E
    Mol Biol Rep; 2010 Jul; 37(6):2915-8. PubMed ID: 19809889
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Scanning and Filling: Ultra-Dense SNP Genotyping Combining Genotyping-By-Sequencing, SNP Array and Whole-Genome Resequencing Data.
    Torkamaneh D; Belzile F
    PLoS One; 2015; 10(7):e0131533. PubMed ID: 26161900
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Low-depth genotyping-by-sequencing (GBS) in a bovine population: strategies to maximize the selection of high quality genotypes and the accuracy of imputation.
    Brouard JS; Boyle B; Ibeagha-Awemu EM; Bissonnette N
    BMC Genet; 2017 Apr; 18(1):32. PubMed ID: 28381212
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Reproductive performance of pubertal red deer (Cervus elaphus) hinds: effects of genetic introgression of wapiti subspecies on pregnancy rates at 18 months of age.
    Asher GW; Archer JA; Scott IC; O'Neill KT; Ward J; Littlejohn RP
    Anim Reprod Sci; 2005 Dec; 90(3-4):287-306. PubMed ID: 16298276
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Sex determination of sika deer (Cervus nippon yesoensis) using nested PCR from feces collected in the field.
    Yamazaki S; Motoi Y; Nagai K; Ishinazaka T; Asano M; Suzuki M
    J Vet Med Sci; 2011 Dec; 73(12):1611-6. PubMed ID: 21836386
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Genome-Wide SNP Discovery and Analysis of Genetic Diversity in Farmed Sika Deer (
    Ba H; Jia B; Wang G; Yang Y; Kedem G; Li C
    G3 (Bethesda); 2017 Sep; 7(9):3169-3176. PubMed ID: 28751500
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Sex determination based on fecal DNA analysis of the amelogenin gene in sika deer (Cervus nippon).
    Yamauchi K; Hamasaki S; Miyazaki K; Kikusui T; Takeuchi Y; Mori Y
    J Vet Med Sci; 2000 Jun; 62(6):669-71. PubMed ID: 10907700
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A High-Density Linkage Map Reveals Sexual Dimorphism in Recombination Landscapes in Red Deer (
    Johnston SE; Huisman J; Ellis PA; Pemberton JM
    G3 (Bethesda); 2017 Aug; 7(8):2859-2870. PubMed ID: 28667018
    [TBL] [Abstract][Full Text] [Related]  

  • 11. X- and Y-chromosome specific variants of the amelogenin gene allow sex determination in sheep (Ovis aries) and European red deer (Cervus elaphus).
    Pfeiffer I; Brenig B
    BMC Genet; 2005 Mar; 6():16. PubMed ID: 15771775
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A phylogenetic comparison of red deer and wapiti using mitochondrial DNA.
    Polziehn RO; Strobeck C
    Mol Phylogenet Evol; 2002 Mar; 22(3):342-56. PubMed ID: 11884159
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The red deer Cervus elaphus genome CerEla1.0: sequencing, annotating, genes, and chromosomes.
    Bana NÁ; Nyiri A; Nagy J; Frank K; Nagy T; Stéger V; Schiller M; Lakatos P; Sugár L; Horn P; Barta E; Orosz L
    Mol Genet Genomics; 2018 Jun; 293(3):665-684. PubMed ID: 29294181
    [TBL] [Abstract][Full Text] [Related]  

  • 14. GBS-SNP-CROP: a reference-optional pipeline for SNP discovery and plant germplasm characterization using variable length, paired-end genotyping-by-sequencing data.
    Melo AT; Bartaula R; Hale I
    BMC Bioinformatics; 2016 Jan; 17():29. PubMed ID: 26754002
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Aberrant chromosomal sex-determining mechanisms in mammals, with special reference to species with XY females.
    Fredga K
    Philos Trans R Soc Lond B Biol Sci; 1988 Dec; 322(1208):83-95. PubMed ID: 2907806
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Re-evaluating data quality of dog mitochondrial, Y chromosomal, and autosomal SNPs genotyped by SNP array.
    O Otecko N; Peng MS; Yang HC; Zhang YP; Wang GD
    Zool Res; 2016 Nov; 37(6):356-360. PubMed ID: 28105800
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Genome-Wide SNP Calling from Genotyping by Sequencing (GBS) Data: A Comparison of Seven Pipelines and Two Sequencing Technologies.
    Torkamaneh D; Laroche J; Belzile F
    PLoS One; 2016; 11(8):e0161333. PubMed ID: 27547936
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A rapid sex-identification test for the forest musk deer (Moschus berezovskii) based on the ZFX/ZFY gene.
    Qiao Y; Zou F; Wei K; Yue B
    Zoolog Sci; 2007 May; 24(5):493-5. PubMed ID: 17867848
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Evaluating Imputation Algorithms for Low-Depth Genotyping-By-Sequencing (GBS) Data.
    Chan AW; Hamblin MT; Jannink JL
    PLoS One; 2016; 11(8):e0160733. PubMed ID: 27537694
    [TBL] [Abstract][Full Text] [Related]  

  • 20. UGbS-Flex, a novel bioinformatics pipeline for imputation-free SNP discovery in polyploids without a reference genome: finger millet as a case study.
    Qi P; Gimode D; Saha D; Schröder S; Chakraborty D; Wang X; Dida MM; Malmberg RL; Devos KM
    BMC Plant Biol; 2018 Jun; 18(1):117. PubMed ID: 29902967
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.