These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

203 related articles for article (PubMed ID: 30957270)

  • 21. Machine learning-assisted decision-support models to better predict patients with calculous pyonephrosis.
    Liu H; Wang X; Tang K; Peng E; Xia D; Chen Z
    Transl Androl Urol; 2021 Feb; 10(2):710-723. PubMed ID: 33718073
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Machine learning algorithms to predict the 1 year unfavourable prognosis for advanced schistosomiasis.
    Jiang H; Deng W; Zhou J; Ren G; Cai X; Li S; Hu B; Li C; Shi Y; Zhang N; Zheng Y; Chen Y; Jiang Q; Zhou Y
    Int J Parasitol; 2021 Oct; 51(11):959-965. PubMed ID: 33891933
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Comparison of machine learning methods with logistic regression analysis in creating predictive models for risk of critical in-hospital events in COVID-19 patients on hospital admission.
    Sievering AW; Wohlmuth P; Geßler N; Gunawardene MA; Herrlinger K; Bein B; Arnold D; Bergmann M; Nowak L; Gloeckner C; Koch I; Bachmann M; Herborn CU; Stang A
    BMC Med Inform Decis Mak; 2022 Nov; 22(1):309. PubMed ID: 36437469
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Application of machine learning approaches to predict the 5-year survival status of patients with esophageal cancer.
    Gong X; Zheng B; Xu G; Chen H; Chen C
    J Thorac Dis; 2021 Nov; 13(11):6240-6251. PubMed ID: 34992804
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Logistic regression technique is comparable to complex machine learning algorithms in predicting cognitive impairment related to post intensive care syndrome.
    Wu T; Wei Y; Wu J; Yi B; Li H
    Sci Rep; 2023 Feb; 13(1):2485. PubMed ID: 36774378
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Postmenopausal endometrial non-benign lesion risk classification through a clinical parameter-based machine learning model.
    Lai J; Rao B; Tian Z; Zhai QJ; Wang YL; Chen SK; Huang XT; Zhu HL; Cui H
    Comput Biol Med; 2024 Apr; 172():108243. PubMed ID: 38484694
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A Machine Learning Approach to Predicting Need for Hospitalization for Pediatric Asthma Exacerbation at the Time of Emergency Department Triage.
    Patel SJ; Chamberlain DB; Chamberlain JM
    Acad Emerg Med; 2018 Dec; 25(12):1463-1470. PubMed ID: 30382605
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A machine learning based two-stage clinical decision support system for predicting patients' discontinuation from opioid use disorder treatment: retrospective observational study.
    Hasan MM; Young GJ; Shi J; Mohite P; Young LD; Weiner SG; Noor-E-Alam M
    BMC Med Inform Decis Mak; 2021 Nov; 21(1):331. PubMed ID: 34836524
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Prediction of lung metastases in thyroid cancer using machine learning based on SEER database.
    Liu W; Wang S; Ye Z; Xu P; Xia X; Guo M
    Cancer Med; 2022 Jun; 11(12):2503-2515. PubMed ID: 35191613
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Construction of a Risk Prediction Model for Hospital-Acquired Pulmonary Embolism in Hospitalized Patients.
    Hou L; Hu L; Gao W; Sheng W; Hao Z; Chen Y; Li J
    Clin Appl Thromb Hemost; 2021; 27():10760296211040868. PubMed ID: 34558325
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Supervised machine learning-based prediction for in-hospital pressure injury development using electronic health records: A retrospective observational cohort study in a university hospital in Japan.
    Nakagami G; Yokota S; Kitamura A; Takahashi T; Morita K; Noguchi H; Ohe K; Sanada H
    Int J Nurs Stud; 2021 Jul; 119():103932. PubMed ID: 33975074
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Claims-Based Algorithms for Identifying Patients With Pulmonary Hypertension: A Comparison of Decision Rules and Machine-Learning Approaches.
    Ong MS; Klann JG; Lin KJ; Maron BA; Murphy SN; Natter MD; Mandl KD
    J Am Heart Assoc; 2020 Oct; 9(19):e016648. PubMed ID: 32990147
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The Comprehensive Machine Learning Analytics for Heart Failure.
    Guo CY; Wu MY; Cheng HM
    Int J Environ Res Public Health; 2021 May; 18(9):. PubMed ID: 34066464
    [No Abstract]   [Full Text] [Related]  

  • 34. Prediction of delayed graft function after kidney transplantation: comparison between logistic regression and machine learning methods.
    Decruyenaere A; Decruyenaere P; Peeters P; Vermassen F; Dhaene T; Couckuyt I
    BMC Med Inform Decis Mak; 2015 Oct; 15():83. PubMed ID: 26466993
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Prediction models for early diagnosis of actinomycotic osteomyelitis of the jaw using machine learning techniques: a preliminary study.
    Choi SG; Lee EY; Lee OJ; Kim S; Kang JY; Lim JS
    BMC Oral Health; 2022 May; 22(1):164. PubMed ID: 35524204
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Ultrafast pulse wave velocity and ensemble learning to predict atherosclerosis risk.
    Bai X; Liu W; Huang H; You H
    Int J Cardiovasc Imaging; 2022 Sep; 38(9):1885-1893. PubMed ID: 35220527
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Machine Learning Algorithms for Predicting Fatty Liver Disease.
    Pei X; Deng Q; Liu Z; Yan X; Sun W
    Ann Nutr Metab; 2021; 77(1):38-45. PubMed ID: 33849025
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The prediction of asymptomatic carotid atherosclerosis with electronic health records: a comparative study of six machine learning models.
    Fan J; Chen M; Luo J; Yang S; Shi J; Yao Q; Zhang X; Du S; Qu H; Cheng Y; Ma S; Zhang M; Xu X; Wang Q; Zhan S
    BMC Med Inform Decis Mak; 2021 Apr; 21(1):115. PubMed ID: 33820531
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Computer-aided diagnosis of lung nodule using gradient tree boosting and Bayesian optimization.
    Nishio M; Nishizawa M; Sugiyama O; Kojima R; Yakami M; Kuroda T; Togashi K
    PLoS One; 2018; 13(4):e0195875. PubMed ID: 29672639
    [TBL] [Abstract][Full Text] [Related]  

  • 40. JOURNAL CLUB: Use of Gradient Boosting Machine Learning to Predict Patient Outcome in Acute Ischemic Stroke on the Basis of Imaging, Demographic, and Clinical Information.
    Xie Y; Jiang B; Gong E; Li Y; Zhu G; Michel P; Wintermark M; Zaharchuk G
    AJR Am J Roentgenol; 2019 Jan; 212(1):44-51. PubMed ID: 30354266
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.