These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
317 related articles for article (PubMed ID: 30957390)
1. Pore-Surface Engineering by Decorating Metal-Oxo Nodes with Phenylsilane to Give Versatile Super-Hydrophobic Metal-Organic Frameworks (MOFs). Sun D; Adiyala PR; Yim SJ; Kim DP Angew Chem Int Ed Engl; 2019 May; 58(22):7405-7409. PubMed ID: 30957390 [TBL] [Abstract][Full Text] [Related]
3. Hydrophobic Metal-Organic Frameworks: Assessment, Construction, and Diverse Applications. Xie LH; Xu MM; Liu XM; Zhao MJ; Li JR Adv Sci (Weinh); 2020 Feb; 7(4):1901758. PubMed ID: 32099755 [TBL] [Abstract][Full Text] [Related]
4. Stepwise Synthesis of Metal-Organic Frameworks. Bosch M; Yuan S; Rutledge W; Zhou HC Acc Chem Res; 2017 Apr; 50(4):857-865. PubMed ID: 28350434 [TBL] [Abstract][Full Text] [Related]
5. Zirconium-oxo Nodes of MOFs with Tunable Electronic Properties Provide Effective ⋅OH Species for Enhanced Methane Hydroxylation. Fang G; Hu JN; Tian LC; Liang JX; Lin J; Li L; Zhu C; Wang X Angew Chem Int Ed Engl; 2022 Sep; 61(36):e202205077. PubMed ID: 35768887 [TBL] [Abstract][Full Text] [Related]
6. Robust super-hydrophobic/super-oleophilic sandwich-like UIO-66-F Zhan Y; He S; Hu J; Zhao S; Zeng G; Zhou M; Zhang G; Sengupta A J Hazard Mater; 2020 Apr; 388():121752. PubMed ID: 31796368 [TBL] [Abstract][Full Text] [Related]
7. Tuning the Wettability of Metal-Organic Frameworks via Defect Engineering for Efficient Oil/Water Separation. Huang Y; Jiao Y; Chen T; Gong Y; Wang S; Liu Y; Sholl DS; Walton KS ACS Appl Mater Interfaces; 2020 Jul; 12(30):34413-34422. PubMed ID: 32551472 [TBL] [Abstract][Full Text] [Related]
8. Combination of Optimization and Metalated-Ligand Exchange: An Effective Approach to Functionalize UiO-66(Zr) MOFs for CO2 Separation. Hu Z; Faucher S; Zhuo Y; Sun Y; Wang S; Zhao D Chemistry; 2015 Nov; 21(48):17246-55. PubMed ID: 26477589 [TBL] [Abstract][Full Text] [Related]
9. Hydrophobic MOFs@Metal Nanoparticles@COFs for Interfacially Confined Photocatalysis with High Efficiency. Sun D; Kim DP ACS Appl Mater Interfaces; 2020 May; 12(18):20589-20595. PubMed ID: 32307981 [TBL] [Abstract][Full Text] [Related]
10. Room Temperature Hydroxyl Group-Assisted Preparation of Hydrophobicity-Adjustable Metal-Organic Framework UiO-66 Composites: Towards Continuous Oil Collection and Emulsion Separation. Xiang W; Liu H; Zhu J; Gong H; Cao Q Chemistry; 2023 Jul; 29(37):e202300662. PubMed ID: 37040121 [TBL] [Abstract][Full Text] [Related]
11. Self-Generation of Surface Roughness by Low-Surface-Energy Alkyl Chains for Highly Stable Superhydrophobic/Superoleophilic MOFs with Multiple Functionalities. Zhu NX; Wei ZW; Chen CX; Wang D; Cao CC; Qiu QF; Jiang JJ; Wang HP; Su CY Angew Chem Int Ed Engl; 2019 Nov; 58(47):17033-17040. PubMed ID: 31507037 [TBL] [Abstract][Full Text] [Related]
12. Studies on photocatalytic CO(2) reduction over NH2 -Uio-66(Zr) and its derivatives: towards a better understanding of photocatalysis on metal-organic frameworks. Sun D; Fu Y; Liu W; Ye L; Wang D; Yang L; Fu X; Li Z Chemistry; 2013 Oct; 19(42):14279-85. PubMed ID: 24038375 [TBL] [Abstract][Full Text] [Related]
13. An in situ self-assembly template strategy for the preparation of hierarchical-pore metal-organic frameworks. Huang H; Li JR; Wang K; Han T; Tong M; Li L; Xie Y; Yang Q; Liu D; Zhong C Nat Commun; 2015 Nov; 6():8847. PubMed ID: 26548441 [TBL] [Abstract][Full Text] [Related]
14. Guest-Responsive Metal-Organic Frameworks as Scaffolds for Separation and Sensing Applications. Karmakar A; Samanta P; Desai AV; Ghosh SK Acc Chem Res; 2017 Oct; 50(10):2457-2469. PubMed ID: 28872829 [TBL] [Abstract][Full Text] [Related]
15. Synchronous Construction of the Hierarchical Pores and High Hydrophobicity of Stable Metal-Organic Frameworks through a Dual Coordination-Competitive Strategy. Hu X; Li H; Wang H; Hu J Langmuir; 2021 Nov; 37(44):13116-13124. PubMed ID: 34704440 [TBL] [Abstract][Full Text] [Related]
16. Zr-based metal-organic frameworks: design, synthesis, structure, and applications. Bai Y; Dou Y; Xie LH; Rutledge W; Li JR; Zhou HC Chem Soc Rev; 2016 Apr; 45(8):2327-67. PubMed ID: 26886869 [TBL] [Abstract][Full Text] [Related]
17. Dynamic Coordination Chemistry of Fluorinated Zr-MOFs: Synthetic Control and Reassembly/Disassembly Beyond de Novo Synthesis to Tune the Structure and Property. Chen CX; Fan YZ; Cao CC; Wang HP; Fan YN; Jiang JJ; Wei ZW; Maurin G; Su CY Chemistry; 2020 Jul; 26(37):8254-8261. PubMed ID: 32125735 [TBL] [Abstract][Full Text] [Related]
18. Hierarchical Pore Development by Plasma Etching of Zr-Based Metal-Organic Frameworks. DeCoste JB; Rossin JA; Peterson GW Chemistry; 2015 Dec; 21(50):18029-32. PubMed ID: 26443007 [TBL] [Abstract][Full Text] [Related]
19. Pore-Environment Engineering with Multiple Metal Sites in Rare-Earth Porphyrinic Metal-Organic Frameworks. Zhang L; Yuan S; Feng L; Guo B; Qin JS; Xu B; Lollar C; Sun D; Zhou HC Angew Chem Int Ed Engl; 2018 Apr; 57(18):5095-5099. PubMed ID: 29508501 [TBL] [Abstract][Full Text] [Related]
20. Hard-and-Soft Integration Strategy for Preparation of Exceptionally Stable Zr(Hf)-UiO-66 via Thiol-Ene Click Chemistry. Du J; Chen L; Zeng X; Yu S; Zhou W; Tan L; Dong L; Zhou C; Cheng J ACS Appl Mater Interfaces; 2020 Jun; 12(25):28576-28585. PubMed ID: 32515180 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]