These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 30957479)

  • 1. Fish-Scale-Like Intercalated Metal Oxide-Based Micromotors as Efficient Water Remediation Agents.
    Liu W; Ge H; Chen X; Lu X; Gu Z; Li J; Wang J
    ACS Appl Mater Interfaces; 2019 May; 11(17):16164-16173. PubMed ID: 30957479
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Electrochemical Deposition Tailors the Catalytic Performance of MnO
    Liu W; Ge H; Gu Z; Lu X; Li J; Wang J
    Small; 2018 Nov; 14(45):e1802771. PubMed ID: 30239129
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Magnetically steerable iron oxides-manganese dioxide core-shell micromotors for organic and microplastic removals.
    Ye H; Wang Y; Liu X; Xu D; Yuan H; Sun H; Wang S; Ma X
    J Colloid Interface Sci; 2021 Apr; 588():510-521. PubMed ID: 33429347
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Bilayer Tubular Micromotors for Simultaneous Environmental Monitoring and Remediation.
    Liang C; Zhan C; Zeng F; Xu D; Wang Y; Zhao W; Zhang J; Guo J; Feng H; Ma X
    ACS Appl Mater Interfaces; 2018 Oct; 10(41):35099-35107. PubMed ID: 30246523
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Simultaneous Removal of Antibiotics and Heavy Metals with Poly(Aspartic Acid)-Based Fenton Micromotors.
    Ding X; Liu Y; Chen X; Liu W; Li J
    Chem Asian J; 2021 Jul; 16(14):1930-1936. PubMed ID: 34002533
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cubic nano-silver-decorated manganese dioxide micromotors: enhanced propulsion and antibacterial performance.
    Liu W; Ge H; Ding X; Lu X; Zhang Y; Gu Z
    Nanoscale; 2020 Oct; 12(38):19655-19664. PubMed ID: 32996985
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Bioinspired zeolitic imidazolate framework (ZIF-8) magnetic micromotors for highly efficient removal of organic pollutants from water.
    Liu J; Li J; Wang G; Yang W; Yang J; Liu Y
    J Colloid Interface Sci; 2019 Nov; 555():234-244. PubMed ID: 31386992
    [TBL] [Abstract][Full Text] [Related]  

  • 8. High-performance carbon/MnO
    He X; Büchel R; Figi R; Zhang Y; Bahk Y; Ma J; Wang J
    Chemosphere; 2019 Mar; 219():427-435. PubMed ID: 30551109
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Manganese Oxide Based Catalytic Micromotors: Effect of Polymorphism on Motion.
    Safdar M; Minh TD; Kinnunen N; Jänis J
    ACS Appl Mater Interfaces; 2016 Nov; 8(47):32624-32629. PubMed ID: 27933845
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Magnesium-Based Micromotors: Water-Powered Propulsion, Multifunctionality, and Biomedical and Environmental Applications.
    Chen C; Karshalev E; Guan J; Wang J
    Small; 2018 Jun; 14(23):e1704252. PubMed ID: 29520991
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Vapor-Driven Propulsion of Catalytic Micromotors.
    Dong R; Li J; Rozen I; Ezhilan B; Xu T; Christianson C; Gao W; Saintillan D; Ren B; Wang J
    Sci Rep; 2015 Aug; 5():13226. PubMed ID: 26285032
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fe(0) Nanomotors in Ton Quantities (10(20) Units) for Environmental Remediation.
    Teo WZ; Zboril R; Medrik I; Pumera M
    Chemistry; 2016 Mar; 22(14):4789-93. PubMed ID: 26845233
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dye-Enhanced Self-Electrophoretic Propulsion of Light-Driven TiO
    Wu Y; Dong R; Zhang Q; Ren B
    Nanomicro Lett; 2017; 9(3):30. PubMed ID: 30393725
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cost-Effective, High-Yield Production of Biotemplated Catalytic Tubular Micromotors as Self-Propelled Microcleaners for Water Treatment.
    Chen L; Yuan H; Chen S; Zheng C; Wu X; Li Z; Liang C; Dai P; Wang Q; Ma X; Yan X
    ACS Appl Mater Interfaces; 2021 Jul; 13(26):31226-31235. PubMed ID: 34176260
    [TBL] [Abstract][Full Text] [Related]  

  • 15. ZnO/ZnO
    Pourrahimi AM; Villa K; Ying Y; Sofer Z; Pumera M
    ACS Appl Mater Interfaces; 2018 Dec; 10(49):42688-42697. PubMed ID: 30500156
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Influence of Enzyme Quantity and Distribution on the Self-Propulsion of Non-Janus Urease-Powered Micromotors.
    Patiño T; Feiner-Gracia N; Arqué X; Miguel-López A; Jannasch A; Stumpp T; Schäffer E; Albertazzi L; Sánchez S
    J Am Chem Soc; 2018 Jun; 140(25):7896-7903. PubMed ID: 29786426
    [TBL] [Abstract][Full Text] [Related]  

  • 17. 3D hierarchical LDHs-based Janus micro-actuator for detection and degradation of catechol.
    Xing N; Lyu Y; Li J; Ng DHL; Zhang X; Zhao W
    J Hazard Mater; 2023 Jan; 442():129914. PubMed ID: 36162304
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Microfluidic Fabrication of Bubble-Propelled Micromotors for Wastewater Treatment.
    Ren M; Guo W; Guo H; Ren X
    ACS Appl Mater Interfaces; 2019 Jun; 11(25):22761-22767. PubMed ID: 31203603
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Multi-Light-Responsive Quantum Dot Sensitized Hybrid Micromotors with Dual-Mode Propulsion.
    María Hormigos R; Jurado Sánchez B; Escarpa A
    Angew Chem Int Ed Engl; 2019 Mar; 58(10):3128-3132. PubMed ID: 30521672
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cell-Like Micromotors.
    Esteban-Fernández de Ávila B; Gao W; Karshalev E; Zhang L; Wang J
    Acc Chem Res; 2018 Sep; 51(9):1901-1910. PubMed ID: 30074758
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.