BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

166 related articles for article (PubMed ID: 30957824)

  • 1. Synthesis and application of the blue fluorescent amino acid l-4-cyanotryptophan to assess peptide-membrane interactions.
    Zhang K; Ahmed IA; Kratochvil HT; DeGrado WF; Gai F; Jo H
    Chem Commun (Camb); 2019 Apr; 55(35):5095-5098. PubMed ID: 30957824
    [TBL] [Abstract][Full Text] [Related]  

  • 2. PET and FRET utility of an amino acid pair: tryptophan and 4-cyanotryptophan.
    Ahmed IA; Rodgers JM; Eng C; Troxler T; Gai F
    Phys Chem Chem Phys; 2019 Jun; 21(24):12843-12849. PubMed ID: 31179453
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Visualization of Platelet Integrins via Two-Photon Microscopy Using Anti-transmembrane Domain Peptides Containing a Blue Fluorescent Amino Acid.
    Fong KP; Ahmed IA; Mravic M; Jo H; Kim OV; Litvinov RI; Weisel JW; DeGrado WF; Gai F; Bennett JS
    Biochemistry; 2021 Jun; 60(21):1722-1730. PubMed ID: 34010565
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Vesicle-Based Assays to Study Membrane Interactions of Amyloid Peptides.
    Malishev R; Kolusheva S; Jelinek R
    Methods Mol Biol; 2019; 1873():39-51. PubMed ID: 30341602
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Measuring peptide translocation into large unilamellar vesicles.
    Spinella SA; Nelson RB; Elmore DE
    J Vis Exp; 2012 Jan; (59):e3571. PubMed ID: 22314806
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fluorescent Amino Acid Initiated de novo Cyclic Peptides for the Label-Free Assessment of Cell Permeability*.
    Wu Y; Bertran MT; Rowley J; Calder EDD; Joshi D; Walport LJ
    ChemMedChem; 2021 Oct; 16(20):3185-3188. PubMed ID: 34236771
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Blue fluorescent amino acid for biological spectroscopy and microscopy.
    Hilaire MR; Ahmed IA; Lin CW; Jo H; DeGrado WF; Gai F
    Proc Natl Acad Sci U S A; 2017 Jun; 114(23):6005-6009. PubMed ID: 28533371
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Introducing a fluorescence-based standard to quantify protein partitioning into membranes.
    Thomas FA; Visco I; Petrášek Z; Heinemann F; Schwille P
    Biochim Biophys Acta; 2015 Nov; 1848(11 Pt A):2932-41. PubMed ID: 26342678
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Membrane binding of pH-sensitive influenza fusion peptides. positioning, configuration, and induced leakage in a lipid vesicle model.
    Esbjörner EK; Oglecka K; Lincoln P; Gräslund A; Nordén B
    Biochemistry; 2007 Nov; 46(47):13490-504. PubMed ID: 17973492
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Utility of 5-Cyanotryptophan Fluorescence as a Sensitive Probe of Protein Hydration.
    Markiewicz BN; Mukherjee D; Troxler T; Gai F
    J Phys Chem B; 2016 Feb; 120(5):936-44. PubMed ID: 26783936
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Phosphatidylserine lipids and membrane order precisely regulate the activity of Polybia-MP1 peptide.
    Alvares DS; Ruggiero Neto J; Ambroggio EE
    Biochim Biophys Acta Biomembr; 2017 Jun; 1859(6):1067-1074. PubMed ID: 28274844
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Designed fluorescent probes reveal interactions between amyloid-beta(1-40) peptides and GM1 gangliosides in micelles and lipid vesicles.
    Mikhalyov I; Olofsson A; Gröbner G; Johansson LB
    Biophys J; 2010 Sep; 99(5):1510-9. PubMed ID: 20816063
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Diffusion of Single-Pass Transmembrane Receptors: From the Plasma Membrane into Giant Liposomes.
    Worch R; Petrášek Z; Schwille P; Weidemann T
    J Membr Biol; 2017 Aug; 250(4):393-406. PubMed ID: 27826635
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Microcin J25 membrane interaction: selectivity toward gel phase.
    Dupuy F; Morero R
    Biochim Biophys Acta; 2011 Jun; 1808(6):1764-71. PubMed ID: 21376012
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Quantitative accounting of dye leakage and photobleaching in single lipid vesicle measurements: Implications for biomacromolecular interaction analysis.
    Park S; Jackman JA; Cho NJ
    Colloids Surf B Biointerfaces; 2019 Oct; 182():110338. PubMed ID: 31301580
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The role of charge and hydrophobicity in peptide-lipid interaction: a comparative study based on tryptophan fluorescence measurements combined with the use of aqueous and hydrophobic quenchers.
    De Kroon AI; Soekarjo MW; De Gier J; De Kruijff B
    Biochemistry; 1990 Sep; 29(36):8229-40. PubMed ID: 2252886
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ionization, partitioning, and dynamics of tryptophan octyl ester: implications for membrane-bound tryptophan residues.
    Chattopadhyay A; Mukherjee S; Rukmini R; Rawat SS; Sudha S
    Biophys J; 1997 Aug; 73(2):839-49. PubMed ID: 9251800
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Structure and function of PspA and Vipp1 N-terminal peptides: Insights into the membrane stress sensing and mitigation.
    McDonald C; Jovanovic G; Wallace BA; Ces O; Buck M
    Biochim Biophys Acta Biomembr; 2017 Jan; 1859(1):28-39. PubMed ID: 27806910
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cellular Membrane Composition Requirement by Antimicrobial and Anticancer Peptide GA-K4.
    Mishig-Ochir T; Gombosuren D; Jigjid A; Tuguldur B; Chuluunbaatar G; Urnukhsaikhan E; Pathak C; Lee BJ
    Protein Pept Lett; 2017; 24(3):197-205. PubMed ID: 27993125
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Design and synthesis of a novel peptide for selective detection of cancer cells.
    Rajavenkatesh K; Padmaja M; Janani I; Aishwarya S; Purna Sai K; Thennarasu S
    Chem Biol Drug Des; 2020 Jun; 95(6):610-623. PubMed ID: 32147880
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.