BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

213 related articles for article (PubMed ID: 30957848)

  • 1. Next-level riboswitch development-implementation of Capture-SELEX facilitates identification of a new synthetic riboswitch.
    Boussebayle A; Torka D; Ollivaud S; Braun J; Bofill-Bosch C; Dombrowski M; Groher F; Hamacher K; Suess B
    Nucleic Acids Res; 2019 May; 47(9):4883-4895. PubMed ID: 30957848
    [TBL] [Abstract][Full Text] [Related]  

  • 2. RNA Capture-SELEX on Streptavidin Magnetic Beads.
    Kraus L; Suess B
    Methods Mol Biol; 2023; 2570():63-71. PubMed ID: 36156774
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Structural Changes in Aptamers are Essential for Synthetic Riboswitch Engineering.
    Hoetzel J; Suess B
    J Mol Biol; 2022 Sep; 434(18):167631. PubMed ID: 35595164
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An in vitro selection for small molecule induced switching RNA molecules.
    Martini L; Ellington AD; Mansy SS
    Methods; 2016 Aug; 106():51-7. PubMed ID: 26899430
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Efficient Method to Identify Synthetic Riboswitches Using RNA-Based Capture-SELEX Combined with In Vivo Screening.
    Kramat J; Suess B
    Methods Mol Biol; 2022; 2518():157-177. PubMed ID: 35666445
    [TBL] [Abstract][Full Text] [Related]  

  • 6. What defines a synthetic riboswitch? - Conformational dynamics of ciprofloxacin aptamers with similar binding affinities but varying regulatory potentials.
    Kaiser C; Schneider J; Groher F; Suess B; Wachtveitl J
    Nucleic Acids Res; 2021 Apr; 49(7):3661-3671. PubMed ID: 33772594
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Beyond Plug and Pray: Context Sensitivity and
    Günzel C; Kühnl F; Arnold K; Findeiß S; Weinberg CE; Stadler PF; Mörl M
    RNA Biol; 2021 Apr; 18(4):457-467. PubMed ID: 32882151
    [TBL] [Abstract][Full Text] [Related]  

  • 8. In vitro selection of antibiotic-binding aptamers.
    Groher F; Suess B
    Methods; 2016 Aug; 106():42-50. PubMed ID: 27223401
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A light-responsive RNA aptamer for an azobenzene derivative.
    Lotz TS; Halbritter T; Kaiser C; Rudolph MM; Kraus L; Groher F; Steinwand S; Wachtveitl J; Heckel A; Suess B
    Nucleic Acids Res; 2019 Feb; 47(4):2029-2040. PubMed ID: 30517682
    [TBL] [Abstract][Full Text] [Related]  

  • 10. RNA-based Capture-SELEX for the selection of small molecule-binding aptamers.
    Boussebayle A; Groher F; Suess B
    Methods; 2019 May; 161():10-15. PubMed ID: 30953759
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Automated physics-based design of synthetic riboswitches from diverse RNA aptamers.
    Espah Borujeni A; Mishler DM; Wang J; Huso W; Salis HM
    Nucleic Acids Res; 2016 Jan; 44(1):1-13. PubMed ID: 26621913
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Development of a novel tobramycin dependent riboswitch.
    Kraus L; Duchardt-Ferner E; Bräuchle E; Fürbacher S; Kelvin D; Marx H; Boussebayle A; Maurer LM; Bofill-Bosch C; Wöhnert J; Suess B
    Nucleic Acids Res; 2023 Nov; 51(20):11375-11385. PubMed ID: 37791877
    [TBL] [Abstract][Full Text] [Related]  

  • 13. RNA aptamers as genetic control devices: the potential of riboswitches as synthetic elements for regulating gene expression.
    Berens C; Groher F; Suess B
    Biotechnol J; 2015 Feb; 10(2):246-57. PubMed ID: 25676052
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ligand-induced conformational capture of a synthetic tetracycline riboswitch revealed by pulse EPR.
    Wunnicke D; Strohbach D; Weigand JE; Appel B; Feresin E; Suess B; Müller S; Steinhoff HJ
    RNA; 2011 Jan; 17(1):182-8. PubMed ID: 21097555
    [TBL] [Abstract][Full Text] [Related]  

  • 15. In Vitro Selection for Small-Molecule-Triggered Strand Displacement and Riboswitch Activity.
    Martini L; Meyer AJ; Ellefson JW; Milligan JN; Forlin M; Ellington AD; Mansy SS
    ACS Synth Biol; 2015 Oct; 4(10):1144-50. PubMed ID: 25978303
    [TBL] [Abstract][Full Text] [Related]  

  • 16.
    Ogawa A; Itoh Y
    ACS Synth Biol; 2020 Oct; 9(10):2648-2655. PubMed ID: 33017145
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Requirements for efficient ligand-gated co-transcriptional switching in designed variants of the B. subtilis pbuE adenine-responsive riboswitch in E. coli.
    Drogalis LK; Batey RT
    PLoS One; 2020; 15(12):e0243155. PubMed ID: 33259551
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Exploiting natural riboswitches for aptamer engineering and validation.
    Mohsen MG; Midy MK; Balaji A; Breaker RR
    Nucleic Acids Res; 2023 Jan; 51(2):966-981. PubMed ID: 36617976
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mechanistic insights into an engineered riboswitch: a switching element which confers riboswitch activity.
    Weigand JE; Schmidtke SR; Will TJ; Duchardt-Ferner E; Hammann C; Wöhnert J; Suess B
    Nucleic Acids Res; 2011 Apr; 39(8):3363-72. PubMed ID: 21149263
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Synthetic ligands for PreQ
    Connelly CM; Numata T; Boer RE; Moon MH; Sinniah RS; Barchi JJ; Ferré-D'Amaré AR; Schneekloth JS
    Nat Commun; 2019 Apr; 10(1):1501. PubMed ID: 30940810
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.