These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

159 related articles for article (PubMed ID: 30958126)

  • 21. Estimating trees from filtered data: identifiability of models for morphological phylogenetics.
    Allman ES; Holder MT; Rhodes JA
    J Theor Biol; 2010 Mar; 263(1):108-19. PubMed ID: 20004210
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Utility of characters evolving at diverse rates of evolution to resolve quartet trees with unequal branch lengths: analytical predictions of long-branch effects.
    Su Z; Townsend JP
    BMC Evol Biol; 2015 May; 15():86. PubMed ID: 25968460
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Bayesian Tip-Dated Phylogenetics in Paleontology: Topological Effects and Stratigraphic Fit.
    King B
    Syst Biol; 2021 Feb; 70(2):283-294. PubMed ID: 32692834
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Bayesian hypothesis testing of four-taxon topologies using molecular sequence data.
    Sinsheimer JS; Lake JA; Little RJ
    Biometrics; 1996 Mar; 52(1):193-210. PubMed ID: 8934592
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Reanalysis of Murphy et al.'s data gives various mammalian phylogenies and suggests overcredibility of Bayesian trees.
    Misawa K; Nei M
    J Mol Evol; 2003; 57 Suppl 1():S290-6. PubMed ID: 15008427
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Phylogenetic relationships of Steinernema Travassos, 1927 (Nematoda: Cephalobina: Steinernematidae) based on nuclear, mitochondrial and morphological data.
    Nadler SA; Bolotin E; Stock SP
    Syst Parasitol; 2006 Mar; 63(3):161-81. PubMed ID: 16541298
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Exploring the relationship between sequence similarity and accurate phylogenetic trees.
    Cantarel BL; Morrison HG; Pearson W
    Mol Biol Evol; 2006 Nov; 23(11):2090-100. PubMed ID: 16891377
    [TBL] [Abstract][Full Text] [Related]  

  • 28. [Introduction to the methods of constructing phylogenetic trees with DNA sequences].
    Li T; Lai XL; Zhong Y
    Yi Chuan; 2004 Mar; 26(2):205-10. PubMed ID: 15639989
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Performance of maximum parsimony and likelihood phylogenetics when evolution is heterogeneous.
    Kolaczkowski B; Thornton JW
    Nature; 2004 Oct; 431(7011):980-4. PubMed ID: 15496922
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The accuracy of species tree estimation under simulation: a comparison of methods.
    Leaché AD; Rannala B
    Syst Biol; 2011 Mar; 60(2):126-37. PubMed ID: 21088009
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Evaluating the relationship between evolutionary divergence and phylogenetic accuracy in AFLP data sets.
    García-Pereira MJ; Caballero A; Quesada H
    Mol Biol Evol; 2010 May; 27(5):988-1000. PubMed ID: 20026482
    [TBL] [Abstract][Full Text] [Related]  

  • 32. On Defining and Finding Islands of Trees and Mitigating Large Island Bias.
    Silva AS; Wilkinson M
    Syst Biol; 2021 Oct; 70(6):1282-1294. PubMed ID: 33749752
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Phylogeny of shorebirds, gulls, and alcids (Aves: Charadrii) from the cytochrome-b gene: parsimony, Bayesian inference, minimum evolution, and quartet puzzling.
    Thomas GH; Wills MA; Székely T
    Mol Phylogenet Evol; 2004 Mar; 30(3):516-26. PubMed ID: 15012936
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Phylogenetic relationships of Cranichidinae and Prescottiinae (Orchidaceae, Cranichideae) inferred from plastid and nuclear DNA sequences.
    Salazar GA; Cabrera LI; Madriñán S; Chase MW
    Ann Bot; 2009 Aug; 104(3):403-16. PubMed ID: 19136493
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Phylogeny of Diplazium (Athyriaceae) revisited: Resolving the backbone relationships based on plastid genomes and phylogenetic tree space analysis.
    Wei R; Zhang XC
    Mol Phylogenet Evol; 2020 Feb; 143():106699. PubMed ID: 31809851
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Relative performance of Bayesian morphological clock and parsimony methods for phylogenetic reconstructions: Insights from the case of Myomiminae and Dryomyinae glirid rodents.
    Dalmasso A; Peláez-Campomanes P; López-Antoñanzas R
    Cladistics; 2022 Dec; 38(6):702-710. PubMed ID: 36043995
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Systematics and morphological evolution within the moss family Bryaceae: a comparison between parsimony and Bayesian methods for reconstruction of ancestral character states.
    Pedersen N; Holyoak DT; Newton AE
    Mol Phylogenet Evol; 2007 Jun; 43(3):891-907. PubMed ID: 17161629
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Phylogeny, character evolution, and systematics of the fern family Ophioglossaceae based on Sanger sequence data, plastomes, and morphology.
    Zhang L; Zhang LB
    Mol Phylogenet Evol; 2022 Aug; 173():107512. PubMed ID: 35595007
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Inference for phylogenies under a hybrid parsimony method: evolutionary-symmetric transversion parsimony.
    Sinsheimer JS; Lake JA; Little RJ
    Biometrics; 1997 Mar; 53(1):23-38. PubMed ID: 9147592
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Bayesian Morphological Clock versus Parsimony: An Insight into the Relationships and Dispersal Events of Postvacuum Cricetidae (Rodentia, Mammalia).
    López-Antoñanzas R; Peláez-Campomanes P
    Syst Biol; 2022 Apr; 71(3):512-525. PubMed ID: 34297129
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.