These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 30958143)

  • 21. Cell cycle dynamics of food-entrapping cells of sponges: an experimental approach.
    Melnikov NP; Lavrov AI
    FEBS J; 2024 Jun; 291(11):2405-2422. PubMed ID: 38401057
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Fate of microplastic captured in the marine demosponge Halichondria panicea.
    Funch P; Kealy RA; Goldstein J; Brewer JR; Solovyeva V; Riisgård HU
    Mar Pollut Bull; 2023 Sep; 194(Pt A):115403. PubMed ID: 37586270
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Body structure of marine sponges. VI. Choanocyte chamber structure in the haplosclerida (porifera, demospongiae) and its relevance to the phylogenesis of the group.
    Langenbruch PF; Jones WC
    J Morphol; 1990 Apr; 204(1):1-8. PubMed ID: 29865728
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Continuous cell movements rearrange anatomical structures in intact sponges.
    Bond C
    J Exp Zool; 1992 Sep; 263(3):284-302. PubMed ID: 1453156
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Condensation rhythm of fresh-water sponges (Spongillidae, Porifera).
    Weissenfels N
    Eur J Cell Biol; 1990 Dec; 53(2):373-83. PubMed ID: 2081551
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Choanocyte-like cells in the digestive system of the starfish Marthasterias glacialis (Echinodermata).
    Martinez A; Lopez J; Villaro AC; Sesma P
    J Morphol; 1991 May; 208(2):215-225. PubMed ID: 29865505
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Conserved expression of vertebrate microvillar gene homologs in choanocytes of freshwater sponges.
    Peña JF; Alié A; Richter DJ; Wang L; Funayama N; Nichols SA
    Evodevo; 2016; 7():13. PubMed ID: 27413529
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Load Response of the Flagellar Beat.
    Klindt GS; Ruloff C; Wagner C; Friedrich BM
    Phys Rev Lett; 2016 Dec; 117(25):258101. PubMed ID: 28036211
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The energetic cost of filtration by demosponges and their behavioural response to ambient currents.
    Ludeman DA; Reidenbach MA; Leys SP
    J Exp Biol; 2017 Mar; 220(Pt 6):995-1007. PubMed ID: 28011822
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Flow-induced buckling dynamics of sperm flagella.
    Kumar M; Walkama DM; Guasto JS; Ardekani AM
    Phys Rev E; 2019 Dec; 100(6-1):063107. PubMed ID: 31962458
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Backflow effects on mass flow gain factor in a centrifugal pump.
    Kang W; Zhou L; Liu D; Wang Z
    Sci Prog; 2021; 104(2):36850421998865. PubMed ID: 33890814
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Effect of space diffuser on flow characteristics of a centrifugal pump by computational fluid dynamic analysis.
    Liu YY; Yang G; Xu Y; Peng F; Wang LQ
    PLoS One; 2020; 15(2):e0228051. PubMed ID: 32012173
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Cell-body rocking is a dominant mechanism for flagellar synchronization in a swimming alga.
    Geyer VF; Jülicher F; Howard J; Friedrich BM
    Proc Natl Acad Sci U S A; 2013 Nov; 110(45):18058-63. PubMed ID: 24145440
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Autonomously responsive pumping by a bacterial flagellar forest: A mean-field approach.
    Martindale JD; Fu HC
    Phys Rev E; 2017 Sep; 96(3-1):033107. PubMed ID: 29346873
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Phase reduction approach to elastohydrodynamic synchronization of beating flagella.
    Kawamura Y; Tsubaki R
    Phys Rev E; 2018 Feb; 97(2-1):022212. PubMed ID: 29548174
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Hydrodynamic functionality of the lorica in choanoflagellates.
    Asadzadeh SS; Nielsen LT; Andersen A; Dölger J; Kiørboe T; Larsen PS; Walther JH
    J R Soc Interface; 2019 Jan; 16(150):20180478. PubMed ID: 30958164
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Hydrodynamic evolution of sperm swimming: Optimal flagella by a genetic algorithm.
    Ishimoto K
    J Theor Biol; 2016 Jun; 399():166-74. PubMed ID: 27063642
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Fine structures of sponge cell membranes: comparative study with freeze-fracture and conventional thin section methods.
    Lethias C; Garrone R; Mazzorana M
    Tissue Cell; 1983; 15(4):523-35. PubMed ID: 6636118
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Mesoscopic modeling of bacterial flagellar microhydrodynamics.
    Gebremichael Y; Ayton GS; Voth GA
    Biophys J; 2006 Nov; 91(10):3640-52. PubMed ID: 16935949
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A new computational fluid dynamics method for in-depth investigation of flow dynamics in roller pump systems.
    Zhou X; Liang XM; Zhao G; Su Y; Wang Y
    Artif Organs; 2014 Jul; 38(7):E106-17. PubMed ID: 24841894
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.