BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

338 related articles for article (PubMed ID: 30958169)

  • 1. A model of the oscillatory mechanical forces in the conventional outflow pathway.
    Sherwood JM; Stamer WD; Overby DR
    J R Soc Interface; 2019 Jan; 16(150):20180652. PubMed ID: 30958169
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Biomechanics of Schlemm's canal endothelium and intraocular pressure reduction.
    Stamer WD; Braakman ST; Zhou EH; Ethier CR; Fredberg JJ; Overby DR; Johnson M
    Prog Retin Eye Res; 2015 Jan; 44():86-98. PubMed ID: 25223880
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mechanical responsiveness of the endothelial cell of Schlemm's canal: scope, variability and its potential role in controlling aqueous humour outflow.
    Zhou EH; Krishnan R; Stamer WD; Perkumas KM; Rajendran K; Nabhan JF; Lu Q; Fredberg JJ; Johnson M
    J R Soc Interface; 2012 Jun; 9(71):1144-55. PubMed ID: 22171066
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Shear stress-triggered nitric oxide release from Schlemm's canal cells.
    Ashpole NE; Overby DR; Ethier CR; Stamer WD
    Invest Ophthalmol Vis Sci; 2014 Nov; 55(12):8067-76. PubMed ID: 25395486
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The vital role for nitric oxide in intraocular pressure homeostasis.
    Reina-Torres E; De Ieso ML; Pasquale LR; Madekurozwa M; van Batenburg-Sherwood J; Overby DR; Stamer WD
    Prog Retin Eye Res; 2021 Jul; 83():100922. PubMed ID: 33253900
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Modeling the biomechanics of the conventional aqueous outflow pathway microstructure in the human eye.
    Karimi A; Razaghi R; Rahmati SM; Downs JC; Acott TS; Wang RK; Johnstone M
    Comput Methods Programs Biomed; 2022 Jun; 221():106922. PubMed ID: 35660940
    [TBL] [Abstract][Full Text] [Related]  

  • 7. ITGA8 positive cells in the conventional outflow tissue exhibit Schlemm's canal endothelial cell properties.
    Wang Y; Wang W; Yang X; Chen W; Yang X; Pan X; Xu P; Zhu W; Han Y; Chen X
    Life Sci; 2021 Aug; 278():119564. PubMed ID: 33961857
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Morphological and biomechanical analyses of the human healthy and glaucomatous aqueous outflow pathway: Imaging-to-modeling.
    Karimi A; Crouch DJ; Razaghi R; Crawford Downs J; Acott TS; Kelley MJ; Behnsen JG; Bosworth LA; Sheridan CM
    Comput Methods Programs Biomed; 2023 Jun; 236():107485. PubMed ID: 37149973
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Microstructure visualization of conventional outflow pathway and finite element modeling analysis of trabecular meshwork.
    Zhang J; Ren L; Mei X; Xu Q; Zheng W; Liu Z
    Biomed Eng Online; 2016 Dec; 15(Suppl 2):162. PubMed ID: 28155681
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Segmental biomechanics of the normal and glaucomatous human aqueous outflow pathway.
    Karimi A; Khan S; Razaghi R; Aga M; Rahmati SM; White E; Kelley MJ; Jian Y; Acott TS
    Acta Biomater; 2024 Jan; 173():148-166. PubMed ID: 37944773
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Developing an experimental-computational workflow to study the biomechanics of the human conventional aqueous outflow pathway.
    Karimi A; Khan S; Razaghi R; Rahmati SM; Gathara M; Tudisco E; Aga M; Kelley MJ; Jian Y; Acott TS
    Acta Biomater; 2023 Jul; 164():346-362. PubMed ID: 37072067
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Extracellular matrix in the trabecular meshwork: intraocular pressure regulation and dysregulation in glaucoma.
    Vranka JA; Kelley MJ; Acott TS; Keller KE
    Exp Eye Res; 2015 Apr; 133():112-25. PubMed ID: 25819459
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Normal and glaucomatous outflow regulation.
    Acott TS; Vranka JA; Keller KE; Raghunathan V; Kelley MJ
    Prog Retin Eye Res; 2021 May; 82():100897. PubMed ID: 32795516
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Morphological changes to Schlemm's canal and the distal aqueous outflow pathway in monkey eyes with laser-induced ocular hypertension.
    Sosnowik S; Swain DL; Fan S; Toris CB; Gong H
    Exp Eye Res; 2022 Jun; 219():109030. PubMed ID: 35283108
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dynamic traction force in trabecular meshwork cells: A 2D culture model for normal and glaucomatous states.
    Karimi A; Aga M; Khan T; D'costa SD; Cardenas-Riumallo S; Zelenitz M; Kelley MJ; Acott TS
    Acta Biomater; 2024 Feb; 175():138-156. PubMed ID: 38151067
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Morphological and hydrodynamic correlates in monkey eyes with laser induced glaucoma.
    Zhang Y; Toris CB; Liu Y; Ye W; Gong H
    Exp Eye Res; 2009 Nov; 89(5):748-56. PubMed ID: 19591828
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Aqueous outflow - A continuum from trabecular meshwork to episcleral veins.
    Carreon T; van der Merwe E; Fellman RL; Johnstone M; Bhattacharya SK
    Prog Retin Eye Res; 2017 Mar; 57():108-133. PubMed ID: 28028002
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The aqueous humor outflow pathways in glaucoma: A unifying concept of disease mechanisms and causative treatment.
    Braunger BM; Fuchshofer R; Tamm ER
    Eur J Pharm Biopharm; 2015 Sep; 95(Pt B):173-81. PubMed ID: 25957840
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The trabecular meshwork outflow pathways: structural and functional aspects.
    Tamm ER
    Exp Eye Res; 2009 Apr; 88(4):648-55. PubMed ID: 19239914
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Aqueous outflow regulation - 21st century concepts.
    Johnstone M; Xin C; Tan J; Martin E; Wen J; Wang RK
    Prog Retin Eye Res; 2021 Jul; 83():100917. PubMed ID: 33217556
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.