These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
143 related articles for article (PubMed ID: 30958171)
1. Analysing diffusion and flow-driven instability using semidefinite programming. Hori Y; Miyazako H J R Soc Interface; 2019 Jan; 16(150):20180586. PubMed ID: 30958171 [TBL] [Abstract][Full Text] [Related]
2. Instability of turing patterns in reaction-diffusion-ODE systems. Marciniak-Czochra A; Karch G; Suzuki K J Math Biol; 2017 Feb; 74(3):583-618. PubMed ID: 27305913 [TBL] [Abstract][Full Text] [Related]
3. Principal bifurcations and symmetries in the emergence of reaction-diffusion-advection patterns on finite domains. Yochelis A; Sheintuch M Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Nov; 80(5 Pt 2):056201. PubMed ID: 20365054 [TBL] [Abstract][Full Text] [Related]
4. Estimation of positive semidefinite correlation matrices by using convex quadratic semidefinite programming. Fushiki T Neural Comput; 2009 Jul; 21(7):2028-48. PubMed ID: 19191594 [TBL] [Abstract][Full Text] [Related]
5. Morphogene adsorption as a Turing instability regulator: Theoretical analysis and possible applications in multicellular embryonic systems. Nesterenko AM; Kuznetsov MB; Korotkova DD; Zaraisky AG PLoS One; 2017; 12(2):e0171212. PubMed ID: 28170437 [TBL] [Abstract][Full Text] [Related]
6. Virtual Cell modelling and simulation software environment. Moraru II; Schaff JC; Slepchenko BM; Blinov ML; Morgan F; Lakshminarayana A; Gao F; Li Y; Loew LM IET Syst Biol; 2008 Sep; 2(5):352-62. PubMed ID: 19045830 [TBL] [Abstract][Full Text] [Related]
7. Pattern formation from spatially heterogeneous reaction-diffusion systems. Van Gorder RA Philos Trans A Math Phys Eng Sci; 2021 Dec; 379(2213):20210001. PubMed ID: 34743604 [TBL] [Abstract][Full Text] [Related]
8. Delay-induced instability in a nutrient-phytoplankton system with flow. Dai C; Zhao M; Yu H; Wang Y Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Mar; 91(3):032929. PubMed ID: 25871194 [TBL] [Abstract][Full Text] [Related]
9. Stochastic simulation of the spatio-temporal dynamics of reaction-diffusion systems: the case for the bicoid gradient. Lecca P; Ihekwaba AE; Dematté L; Priami C J Integr Bioinform; 2010 Nov; 7(1):150. PubMed ID: 21098882 [TBL] [Abstract][Full Text] [Related]
10. Cross-diffusion-driven instability for reaction-diffusion systems: analysis and simulations. Madzvamuse A; Ndakwo HS; Barreira R J Math Biol; 2015 Mar; 70(4):709-43. PubMed ID: 24671430 [TBL] [Abstract][Full Text] [Related]
11. Transport dissipative particle dynamics model for mesoscopic advection-diffusion-reaction problems. Li Z; Yazdani A; Tartakovsky A; Karniadakis GE J Chem Phys; 2015 Jul; 143(1):014101. PubMed ID: 26156459 [TBL] [Abstract][Full Text] [Related]
16. Enforcing necessary non-negativity constraints for common diffusion MRI models using sum of squares programming. Dela Haije T; Özarslan E; Feragen A Neuroimage; 2020 Apr; 209():116405. PubMed ID: 31846758 [TBL] [Abstract][Full Text] [Related]
17. LANDFLOW: a 3D finite volume model of combined free and porous flow of water in contaminated land sites. Das DB; Nassehi V Water Sci Technol; 2001; 43(7):55-64. PubMed ID: 11385875 [TBL] [Abstract][Full Text] [Related]
18. Design of a multiple kernel learning algorithm for LS-SVM by convex programming. Jian L; Xia Z; Liang X; Gao C Neural Netw; 2011 Jun; 24(5):476-83. PubMed ID: 21441012 [TBL] [Abstract][Full Text] [Related]
19. The SBML ODE Solver Library: a native API for symbolic and fast numerical analysis of reaction networks. Machné R; Finney A; Müller S; Lu J; Widder S; Flamm C Bioinformatics; 2006 Jun; 22(11):1406-7. PubMed ID: 16527832 [TBL] [Abstract][Full Text] [Related]
20. A simulator for spatially extended kappa models. Sorokina O; Sorokin A; Douglas Armstrong J; Danos V Bioinformatics; 2013 Dec; 29(23):3105-6. PubMed ID: 24021382 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]