These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
170 related articles for article (PubMed ID: 30958180)
1. Homogenization of cortical bone reveals that the organization and shape of pores marginally affect elasticity. Cai X; Brenner R; Peralta L; Olivier C; Gouttenoire PJ; Chappard C; Peyrin F; Cassereau D; Laugier P; Grimal Q J R Soc Interface; 2019 Feb; 16(151):20180911. PubMed ID: 30958180 [TBL] [Abstract][Full Text] [Related]
2. Anisotropic elastic properties of human femoral cortical bone and relationships with composition and microstructure in elderly. Cai X; Follet H; Peralta L; Gardegaront M; Farlay D; Gauthier R; Yu B; Gineyts E; Olivier C; Langer M; Gourrier A; Mitton D; Peyrin F; Grimal Q; Laugier P Acta Biomater; 2019 May; 90():254-266. PubMed ID: 30922952 [TBL] [Abstract][Full Text] [Related]
3. To what extent can cortical bone millimeter-scale elasticity be predicted by a two-phase composite model with variable porosity? Granke M; Grimal Q; Parnell WJ; Raum K; Gerisch A; Peyrin F; Saïed A; Laugier P Acta Biomater; 2015 Jan; 12():207-215. PubMed ID: 25462527 [TBL] [Abstract][Full Text] [Related]
4. Intracortical stiffness of mid-diaphysis femur bovine bone: lacunar-canalicular based homogenization numerical solutions and microhardness measurements. Hage IS; Hamade RF J Mater Sci Mater Med; 2017 Sep; 28(9):135. PubMed ID: 28762142 [TBL] [Abstract][Full Text] [Related]
5. Maximum effect of the heterogeneity of tissue mineralization on the effective cortical bone elastic properties. Brémaud L; Cai X; Brenner R; Grimal Q Biomech Model Mechanobiol; 2021 Aug; 20(4):1509-1518. PubMed ID: 33884512 [TBL] [Abstract][Full Text] [Related]
6. Pore network microarchitecture influences human cortical bone elasticity during growth and aging. Bala Y; Lefèvre E; Roux JP; Baron C; Lasaygues P; Pithioux M; Kaftandjian V; Follet H J Mech Behav Biomed Mater; 2016 Oct; 63():164-173. PubMed ID: 27389322 [TBL] [Abstract][Full Text] [Related]
7. The influence of mesoscale porosity on cortical bone anisotropy. Investigations via asymptotic homogenization. Parnell WJ; Grimal Q J R Soc Interface; 2009 Jan; 6(30):97-109. PubMed ID: 18628200 [TBL] [Abstract][Full Text] [Related]
8. Determination of the heterogeneous anisotropic elastic properties of human femoral bone: from nanoscopic to organ scale. Sansalone V; Naili S; Bousson V; Bergot C; Peyrin F; Zarka J; Laredo JD; Haïat G J Biomech; 2010 Jul; 43(10):1857-63. PubMed ID: 20392446 [TBL] [Abstract][Full Text] [Related]
9. Change in porosity is the major determinant of the variation of cortical bone elasticity at the millimeter scale in aged women. Granke M; Grimal Q; Saïed A; Nauleau P; Peyrin F; Laugier P Bone; 2011 Nov; 49(5):1020-6. PubMed ID: 21855669 [TBL] [Abstract][Full Text] [Related]
10. Prediction of cortical bone elastic constants by a two-level micromechanical model using a generalized self-consistent method. Dong XN; Guo XE J Biomech Eng; 2006 Jun; 128(3):309-16. PubMed ID: 16706580 [TBL] [Abstract][Full Text] [Related]
11. Micromechanical modeling of elastic properties of cortical bone accounting for anisotropy of dense tissue. Salguero L; Saadat F; Sevostianov I J Biomech; 2014 Oct; 47(13):3279-87. PubMed ID: 25234350 [TBL] [Abstract][Full Text] [Related]
12. A two-parameter model of the effective elastic tensor for cortical bone. Grimal Q; Rus G; Parnell WJ; Laugier P J Biomech; 2011 May; 44(8):1621-5. PubMed ID: 21453920 [TBL] [Abstract][Full Text] [Related]
13. Relating age and micro-architecture with apparent-level elastic constants: a micro-finite element study of female cortical bone from the anterior femoral midshaft. Donaldson FE; Pankaj P; Cooper DM; Thomas CD; Clement JG; Simpson AH Proc Inst Mech Eng H; 2011 Jun; 225(6):585-96. PubMed ID: 22034742 [TBL] [Abstract][Full Text] [Related]
14. Stochastic multiscale modelling of cortical bone elasticity based on high-resolution imaging. Sansalone V; Gagliardi D; Desceliers C; Bousson V; Laredo JD; Peyrin F; Haïat G; Naili S Biomech Model Mechanobiol; 2016 Feb; 15(1):111-31. PubMed ID: 26202170 [TBL] [Abstract][Full Text] [Related]
15. 3D characterization of pores in the cortical bone of human femur in the elderly at different locations as determined by synchrotron micro-computed tomography images. Chappard C; Bensalah S; Olivier C; Gouttenoire PJ; Marchadier A; Benhamou C; Peyrin F Osteoporos Int; 2013 Mar; 24(3):1023-33. PubMed ID: 22814943 [TBL] [Abstract][Full Text] [Related]
16. Estimation of the effective transversely isotropic elastic constants of a material from known values of the material's orthotropic elastic constants. Yoon YJ; Yang G; Cowin SC Biomech Model Mechanobiol; 2002 Jun; 1(1):83-93. PubMed ID: 14586709 [TBL] [Abstract][Full Text] [Related]
17. Analytical methods to determine the effective mesoscopic and macroscopic elastic properties of cortical bone. Parnell WJ; Vu MB; Grimal Q; Naili S Biomech Model Mechanobiol; 2012 Jul; 11(6):883-901. PubMed ID: 22109098 [TBL] [Abstract][Full Text] [Related]
18. The dependence of transversely isotropic elasticity of human femoral cortical bone on porosity. Dong XN; Guo XE J Biomech; 2004 Aug; 37(8):1281-7. PubMed ID: 15212934 [TBL] [Abstract][Full Text] [Related]
19. Cortical bone viscoelastic damping assessed with resonant ultrasound spectroscopy reflects porosity and mineral content. Fan F; Cai X; Follet H; Peyrin F; Laugier P; Niu H; Grimal Q J Mech Behav Biomed Mater; 2021 May; 117():104388. PubMed ID: 33636678 [TBL] [Abstract][Full Text] [Related]
20. Towards assessing cortical bone porosity using low-frequency quantitative acoustics: A phantom-based study. Vogl F; Bernet B; Bolognesi D; Taylor WR PLoS One; 2017; 12(9):e0182617. PubMed ID: 28880868 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]