BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

176 related articles for article (PubMed ID: 30958473)

  • 21. A neural network based model effectively predicts enhancers from clinical ATAC-seq samples.
    Thibodeau A; Uyar A; Khetan S; Stitzel ML; Ucar D
    Sci Rep; 2018 Oct; 8(1):16048. PubMed ID: 30375457
    [TBL] [Abstract][Full Text] [Related]  

  • 22. An optimized ATAC-seq protocol for genome-wide mapping of active regulatory elements in primary mouse cortical neurons.
    Maor-Nof M; Shipony Z; Marinov GK; Greenleaf WJ; Gitler AD
    STAR Protoc; 2021 Dec; 2(4):100854. PubMed ID: 34647036
    [TBL] [Abstract][Full Text] [Related]  

  • 23. From reads to insight: a hitchhiker's guide to ATAC-seq data analysis.
    Yan F; Powell DR; Curtis DJ; Wong NC
    Genome Biol; 2020 Feb; 21(1):22. PubMed ID: 32014034
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Assay for Transposase-Accessible Chromatin with High-Throughput Sequencing (ATAC-Seq) Protocol for Zebrafish Embryos.
    Doganli C; Sandoval M; Thomas S; Hart D
    Methods Mol Biol; 2017; 1507():59-66. PubMed ID: 27832532
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Library Preparation for ATAC-Sequencing of Mouse CD4+ T Cells Isolated from the Lung and Lymph Nodes After Helminth Infection.
    Harmacek LD; Patel P; Woolaver R; Reinhardt RL; O'Connor BP
    Methods Mol Biol; 2018; 1799():327-340. PubMed ID: 29956161
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Quantification, Dynamic Visualization, and Validation of Bias in ATAC-Seq Data with ataqv.
    Orchard P; Kyono Y; Hensley J; Kitzman JO; Parker SCJ
    Cell Syst; 2020 Mar; 10(3):298-306.e4. PubMed ID: 32213349
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Dissecting the Epigenome Driving Drug Resistance by ATAC-Seq.
    de Nicola F; Corleone G; Goeman F
    Methods Mol Biol; 2022; 2535():171-185. PubMed ID: 35867231
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Assessing Chromatin Accessibility During WBR in Acoels.
    Gehrke AR; Srivastava M
    Methods Mol Biol; 2022; 2450():549-561. PubMed ID: 35359328
    [TBL] [Abstract][Full Text] [Related]  

  • 29. ATAC-see reveals the accessible genome by transposase-mediated imaging and sequencing.
    Chen X; Shen Y; Draper W; Buenrostro JD; Litzenburger U; Cho SW; Satpathy AT; Carter AC; Ghosh RP; East-Seletsky A; Doudna JA; Greenleaf WJ; Liphardt JT; Chang HY
    Nat Methods; 2016 Dec; 13(12):1013-1020. PubMed ID: 27749837
    [TBL] [Abstract][Full Text] [Related]  

  • 30. DeNOPA: decoding nucleosome positions sensitively with sparse ATAC-seq data.
    Xu B; Li X; Gao X; Jia Y; Liu J; Li F; Zhang Z
    Brief Bioinform; 2022 Jan; 23(1):. PubMed ID: 34875002
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Mitochondrial single-cell ATAC-seq for high-throughput multi-omic detection of mitochondrial genotypes and chromatin accessibility.
    Lareau CA; Liu V; Muus C; Praktiknjo SD; Nitsch L; Kautz P; Sandor K; Yin Y; Gutierrez JC; Pelka K; Satpathy AT; Regev A; Sankaran VG; Ludwig LS
    Nat Protoc; 2023 May; 18(5):1416-1440. PubMed ID: 36792778
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Combining ATAC-seq with nuclei sorting for discovery of cis-regulatory regions in plant genomes.
    Lu Z; Hofmeister BT; Vollmers C; DuBois RM; Schmitz RJ
    Nucleic Acids Res; 2017 Apr; 45(6):e41. PubMed ID: 27903897
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Protocol for assaying chromatin accessibility using ATAC-seq in plants.
    Wang FX; Shang GD; Wu LY; Mai YX; Gao J; Xu ZG; Wang JW
    STAR Protoc; 2021 Mar; 2(1):100289. PubMed ID: 33532736
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Protocol for assay of transposase accessible chromatin sequencing in non-model species.
    Kissane S; Dhandapani V; Orsini L
    STAR Protoc; 2021 Mar; 2(1):100341. PubMed ID: 33659905
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Identification of transcription factor binding sites using ATAC-seq.
    Li Z; Schulz MH; Look T; Begemann M; Zenke M; Costa IG
    Genome Biol; 2019 Feb; 20(1):45. PubMed ID: 30808370
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Improved quality metrics for association and reproducibility in chromatin accessibility data using mutual information.
    Roth C; Venu V; Job V; Lubbers N; Sanbonmatsu KY; Steadman CR; Starkenburg SR
    BMC Bioinformatics; 2023 Nov; 24(1):441. PubMed ID: 37990143
    [TBL] [Abstract][Full Text] [Related]  

  • 37. ATAC2GRN: optimized ATAC-seq and DNase1-seq pipelines for rapid and accurate genome regulatory network inference.
    Pranzatelli TJF; Michael DG; Chiorini JA
    BMC Genomics; 2018 Jul; 19(1):563. PubMed ID: 30064353
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Extensive evaluation of ATAC-seq protocols for native or formaldehyde-fixed nuclei.
    Zhang H; Rice ME; Alvin JW; Farrera-Gaffney D; Galligan JJ; Johnson MDL; Cusanovich DA
    BMC Genomics; 2022 Mar; 23(1):214. PubMed ID: 35296236
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Intrinsic bias estimation for improved analysis of bulk and single-cell chromatin accessibility profiles using SELMA.
    Hu SS; Liu L; Li Q; Ma W; Guertin MJ; Meyer CA; Deng K; Zhang T; Zang C
    Nat Commun; 2022 Sep; 13(1):5533. PubMed ID: 36130957
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Mapping Chromatin Accessibility in Human Naïve Pluripotent Stem Cells Using ATAC-Seq.
    Cinkornpumin JK; Hossain I; Pastor WA
    Methods Mol Biol; 2022; 2416():201-211. PubMed ID: 34870838
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.