These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

165 related articles for article (PubMed ID: 30959420)

  • 1. Structural variants of Salmonella Typhimurium lipopolysaccharide induce less dimerization of TLR4/MD-2 and reduced pro-inflammatory cytokine production in human monocytes.
    Aldapa-Vega G; Moreno-Eutimio MA; Berlanga-Taylor AJ; Jiménez-Uribe AP; Nieto-Velazquez G; López-Ortega O; Mancilla-Herrera I; Cortés-Malagón EM; Gunn JS; Isibasi A; Wong-Baeza I; López-Macías C; Pastelin-Palacios R
    Mol Immunol; 2019 Jul; 111():43-52. PubMed ID: 30959420
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Tailored Modulation of Cellular Pro-inflammatory Responses With Disaccharide Lipid A Mimetics.
    Heine H; Adanitsch F; Peternelj TT; Haegman M; Kasper C; Ittig S; Beyaert R; Jerala R; Zamyatina A
    Front Immunol; 2021; 12():631797. PubMed ID: 33815382
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Humanized TLR4/MD-2 mice reveal LPS recognition differentially impacts susceptibility to Yersinia pestis and Salmonella enterica.
    Hajjar AM; Ernst RK; Fortuno ES; Brasfield AS; Yam CS; Newlon LA; Kollmann TR; Miller SI; Wilson CB
    PLoS Pathog; 2012; 8(10):e1002963. PubMed ID: 23071439
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Activation of Human Toll-like Receptor 4 (TLR4)·Myeloid Differentiation Factor 2 (MD-2) by Hypoacylated Lipopolysaccharide from a Clinical Isolate of Burkholderia cenocepacia.
    Di Lorenzo F; Kubik Ł; Oblak A; Lorè NI; Cigana C; Lanzetta R; Parrilli M; Hamad MA; De Soyza A; Silipo A; Jerala R; Bragonzi A; Valvano MA; Martín-Santamaría S; Molinaro A
    J Biol Chem; 2015 Aug; 290(35):21305-19. PubMed ID: 26160169
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Recognition of lipid A variants by the TLR4-MD-2 receptor complex.
    Maeshima N; Fernandez RC
    Front Cell Infect Microbiol; 2013; 3():3. PubMed ID: 23408095
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Exogenous ceramide-1-phosphate reduces lipopolysaccharide (LPS)-mediated cytokine expression.
    Hankins JL; Fox TE; Barth BM; Unrath KA; Kester M
    J Biol Chem; 2011 Dec; 286(52):44357-66. PubMed ID: 22065582
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Modulation of endotoxicity of Shigella generalized modules for membrane antigens (GMMA) by genetic lipid A modifications: relative activation of TLR4 and TLR2 pathways in different mutants.
    Rossi O; Pesce I; Giannelli C; Aprea S; Caboni M; Citiulo F; Valentini S; Ferlenghi I; MacLennan CA; D'Oro U; Saul A; Gerke C
    J Biol Chem; 2014 Sep; 289(36):24922-35. PubMed ID: 25023285
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The polysaccharide portion plays an indispensable role in Salmonella lipopolysaccharide-induced activation of NF-kappaB through human toll-like receptor 4.
    Muroi M; Tanamoto K
    Infect Immun; 2002 Nov; 70(11):6043-7. PubMed ID: 12379680
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Innate immunity mediated by MyD88 signal is not essential for induction of lipopolysaccharide-specific B cell responses but is indispensable for protection against Salmonella enterica serovar Typhimurium infection.
    Ko HJ; Yang JY; Shim DH; Yang H; Park SM; Curtiss R; Kweon MN
    J Immunol; 2009 Feb; 182(4):2305-12. PubMed ID: 19201885
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Subversion of innate and adaptive immune activation induced by structurally modified lipopolysaccharide from Salmonella typhimurium.
    Pastelin-Palacios R; Gil-Cruz C; Pérez-Shibayama CI; Moreno-Eutimio MA; Cervantes-Barragán L; Arriaga-Pizano L; Ludewig B; Cunningham AF; García-Zepeda EA; Becker I; Alpuche-Aranda C; Bonifaz L; Gunn JS; Isibasi A; López-Macías C
    Immunology; 2011 Aug; 133(4):469-81. PubMed ID: 21631497
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Phosphate groups of lipid A are essential for Salmonella enterica serovar Typhimurium virulence and affect innate and adaptive immunity.
    Kong Q; Six DA; Liu Q; Gu L; Wang S; Alamuri P; Raetz CR; Curtiss R
    Infect Immun; 2012 Sep; 80(9):3215-24. PubMed ID: 22753374
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The Role of Carbohydrates in the Lipopolysaccharide (LPS)/Toll-Like Receptor 4 (TLR4) Signalling.
    Cochet F; Peri F
    Int J Mol Sci; 2017 Nov; 18(11):. PubMed ID: 29099761
    [TBL] [Abstract][Full Text] [Related]  

  • 13. IL-27 amplifies cytokine responses to Gram-negative bacterial products and Salmonella typhimurium infection.
    Petes C; Odoardi N; Plater SM; Martin NL; Gee K
    Sci Rep; 2018 Sep; 8(1):13704. PubMed ID: 30209294
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Bordetella pertussis Lipid A Recognition by Toll-like Receptor 4 and MD-2 Is Dependent on Distinct Charged and Uncharged Interfaces.
    Maeshima N; Evans-Atkinson T; Hajjar AM; Fernandez RC
    J Biol Chem; 2015 May; 290(21):13440-53. PubMed ID: 25837248
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Partially glycosylated dendrimers block MD-2 and prevent TLR4-MD-2-LPS complex mediated cytokine responses.
    Barata TS; Teo I; Brocchini S; Zloh M; Shaunak S
    PLoS Comput Biol; 2011 Jun; 7(6):e1002095. PubMed ID: 21738462
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Noncanonical inflammasome activation by intracellular LPS independent of TLR4.
    Kayagaki N; Wong MT; Stowe IB; Ramani SR; Gonzalez LC; Akashi-Takamura S; Miyake K; Zhang J; Lee WP; Muszyński A; Forsberg LS; Carlson RW; Dixit VM
    Science; 2013 Sep; 341(6151):1246-9. PubMed ID: 23887873
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Genome-wide expression profiling and mutagenesis studies reveal that lipopolysaccharide responsiveness appears to be absolutely dependent on TLR4 and MD-2 expression and is dependent upon intermolecular ionic interactions.
    Meng J; Gong M; Björkbacka H; Golenbock DT
    J Immunol; 2011 Oct; 187(7):3683-93. PubMed ID: 21865549
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Acylation determines the toll-like receptor (TLR)-dependent positive versus TLR2-, mannose receptor-, and SIGNR1-independent negative regulation of pro-inflammatory cytokines by mycobacterial lipomannan.
    Doz E; Rose S; Nigou J; Gilleron M; Puzo G; Erard F; Ryffel B; Quesniaux VF
    J Biol Chem; 2007 Sep; 282(36):26014-25. PubMed ID: 17617634
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Lipopolysaccharide Recognition in the Crossroads of TLR4 and Caspase-4/11 Mediated Inflammatory Pathways.
    Zamyatina A; Heine H
    Front Immunol; 2020; 11():585146. PubMed ID: 33329561
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Glycyrrhizin and isoliquiritigenin suppress the LPS sensor toll-like receptor 4/MD-2 complex signaling in a different manner.
    Honda H; Nagai Y; Matsunaga T; Saitoh S; Akashi-Takamura S; Hayashi H; Fujii I; Miyake K; Muraguchi A; Takatsu K
    J Leukoc Biol; 2012 Jun; 91(6):967-76. PubMed ID: 22422925
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.