These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

275 related articles for article (PubMed ID: 30959461)

  • 1. Adaptations to high-intensity interval training in skeletal muscle require NADPH oxidase 2.
    Henríquez-Olguín C; Renani LB; Arab-Ceschia L; Raun SH; Bhatia A; Li Z; Knudsen JR; Holmdahl R; Jensen TE
    Redox Biol; 2019 Jun; 24():101188. PubMed ID: 30959461
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Superior mitochondrial adaptations in human skeletal muscle after interval compared to continuous single-leg cycling matched for total work.
    MacInnis MJ; Zacharewicz E; Martin BJ; Haikalis ME; Skelly LE; Tarnopolsky MA; Murphy RM; Gibala MJ
    J Physiol; 2017 May; 595(9):2955-2968. PubMed ID: 27396440
    [TBL] [Abstract][Full Text] [Related]  

  • 3. NOX2 deficiency exacerbates diet-induced obesity and impairs molecular training adaptations in skeletal muscle.
    Henriquez-Olguin C; Meneses-Valdes R; Raun SH; Gallero S; Knudsen JR; Li Z; Li J; Sylow L; Jaimovich E; Jensen TE
    Redox Biol; 2023 Sep; 65():102842. PubMed ID: 37572454
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Monocarboxylate transporter 4 deficiency enhances high-intensity interval training-induced metabolic adaptations in skeletal muscle.
    Tamura Y; Jee E; Kouzaki K; Kotani T; Nakazato K
    J Physiol; 2024 Apr; 602(7):1313-1340. PubMed ID: 38513062
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Two weeks of high-intensity interval training increases skeletal muscle mitochondrial respiration via complex-specific remodeling in sedentary humans.
    Batterson PM; McGowan EM; Stierwalt HD; Ehrlicher SE; Newsom SA; Robinson MM
    J Appl Physiol (1985); 2023 Feb; 134(2):339-355. PubMed ID: 36603044
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mitochondrial adaptations to high intensity interval training in older females and males.
    Chrøis KM; Dohlmann TL; Søgaard D; Hansen CV; Dela F; Helge JW; Larsen S
    Eur J Sport Sci; 2020 Feb; 20(1):135-145. PubMed ID: 31145037
    [No Abstract]   [Full Text] [Related]  

  • 7. Cytosolic ROS production by NADPH oxidase 2 regulates muscle glucose uptake during exercise.
    Henríquez-Olguin C; Knudsen JR; Raun SH; Li Z; Dalbram E; Treebak JT; Sylow L; Holmdahl R; Richter EA; Jaimovich E; Jensen TE
    Nat Commun; 2019 Oct; 10(1):4623. PubMed ID: 31604916
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Increasing skeletal muscle carnitine availability does not alter the adaptations to high-intensity interval training.
    Shannon CE; Ghasemi R; Greenhaff PL; Stephens FB
    Scand J Med Sci Sports; 2018 Jan; 28(1):107-115. PubMed ID: 28345160
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The Emerging Roles of Nicotinamide Adenine Dinucleotide Phosphate Oxidase 2 in Skeletal Muscle Redox Signaling and Metabolism.
    Henríquez-Olguín C; Boronat S; Cabello-Verrugio C; Jaimovich E; Hidalgo E; Jensen TE
    Antioxid Redox Signal; 2019 Dec; 31(18):1371-1410. PubMed ID: 31588777
    [No Abstract]   [Full Text] [Related]  

  • 10. Intermittent and continuous high-intensity exercise training induce similar acute but different chronic muscle adaptations.
    Cochran AJ; Percival ME; Tricarico S; Little JP; Cermak N; Gillen JB; Tarnopolsky MA; Gibala MJ
    Exp Physiol; 2014 May; 99(5):782-91. PubMed ID: 24532598
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Apelin regulates skeletal muscle adaptation to exercise in a high-intensity interval training model.
    Kilpiö T; Skarp S; Perjés Á; Swan J; Kaikkonen L; Saarimäki S; Szokodi I; Penninger JM; Szabó Z; Magga J; Kerkelä R
    Am J Physiol Cell Physiol; 2024 May; 326(5):C1437-C1450. PubMed ID: 38525542
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Physiological adaptations to interval training and the role of exercise intensity.
    MacInnis MJ; Gibala MJ
    J Physiol; 2017 May; 595(9):2915-2930. PubMed ID: 27748956
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Skeletal Muscle Adaptive Responses to Different Types of Short-Term Exercise Training and Detraining in Middle-Age Men.
    Callahan MJ; Parr EB; Snijders T; Conceição MS; Radford BE; Timmins RG; Devlin BL; Hawley JA; Camera DM
    Med Sci Sports Exerc; 2021 Oct; 53(10):2023-2036. PubMed ID: 33867497
    [TBL] [Abstract][Full Text] [Related]  

  • 14. High-intensity exercise training enhances mitochondrial oxidative phosphorylation efficiency in a temperature-dependent manner in human skeletal muscle: implications for exercise performance.
    Fiorenza M; Lemminger AK; Marker M; Eibye K; Iaia FM; Bangsbo J; Hostrup M
    FASEB J; 2019 Aug; 33(8):8976-8989. PubMed ID: 31136218
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Post-exercise cold water immersion does not alter high intensity interval training-induced exercise performance and Hsp72 responses, but enhances mitochondrial markers.
    Aguiar PF; Magalhães SM; Fonseca IA; da Costa Santos VB; de Matos MA; Peixoto MF; Nakamura FY; Crandall C; Araújo HN; Silveira LR; Rocha-Vieira E; de Castro Magalhães F; Amorim FT
    Cell Stress Chaperones; 2016 Sep; 21(5):793-804. PubMed ID: 27278803
    [TBL] [Abstract][Full Text] [Related]  

  • 16. High-intensity interval and endurance training are associated with divergent skeletal muscle adaptations in a rodent model of hypertension.
    Holloway TM; Bloemberg D; da Silva ML; Quadrilatero J; Spriet LL
    Am J Physiol Regul Integr Comp Physiol; 2015 Jun; 308(11):R927-34. PubMed ID: 25855305
    [TBL] [Abstract][Full Text] [Related]  

  • 17. High-intensity interval training changes the expression of muscle RING-finger protein-1 and muscle atrophy F-box proteins and proteins involved in the mechanistic target of rapamycin pathway and autophagy in rat skeletal muscle.
    Cui X; Zhang Y; Wang Z; Yu J; Kong Z; Ružić L
    Exp Physiol; 2019 Oct; 104(10):1505-1517. PubMed ID: 31357248
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Exercise training during chemotherapy preserves skeletal muscle fiber area, capillarization, and mitochondrial content in patients with breast cancer.
    Mijwel S; Cardinale DA; Norrbom J; Chapman M; Ivarsson N; Wengström Y; Sundberg CJ; Rundqvist H
    FASEB J; 2018 Oct; 32(10):5495-5505. PubMed ID: 29750574
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Six high-intensity interval training sessions over 5 days increases maximal oxygen uptake, endurance capacity, and sub-maximal exercise fat oxidation as much as 6 high-intensity interval training sessions over 2 weeks.
    Atakan MM; Güzel Y; Bulut S; Koşar ŞN; McConell GK; Turnagöl HH
    J Sport Health Sci; 2021 Jul; 10(4):478-487. PubMed ID: 32565243
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Exercise-intensity dependent alterations in plasma redox status do not reflect skeletal muscle redox-sensitive protein signaling.
    Parker L; Trewin A; Levinger I; Shaw CS; Stepto NK
    J Sci Med Sport; 2018 Apr; 21(4):416-421. PubMed ID: 28689678
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.