These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 30959777)

  • 1. A Novelty Detection Approach for Tendons of Prestressed Concrete Bridges Based on a Convolutional Autoencoder and Acceleration Data.
    Lee K; Jeong S; Sim SH; Shin DH
    Sensors (Basel); 2019 Apr; 19(7):. PubMed ID: 30959777
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Damage-Detection Approach for Bridges with Multi-Vehicle Loads Using Convolutional Autoencoder.
    Lee K; Jeong S; Sim SH; Shin DH
    Sensors (Basel); 2022 Feb; 22(5):. PubMed ID: 35270984
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Corrosion Detection in PSC Bridge Tendons Using Kernel PCA Denoising of Measured MFL Signals.
    Oh CK; Joh C; Lee JW; Park KY
    Sensors (Basel); 2020 Oct; 20(21):. PubMed ID: 33105752
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Estimation of Prestress Force Distribution in the Multi-Strand System of Prestressed Concrete Structures.
    Cho K; Park SY; Cho JR; Kim ST; Park YH
    Sensors (Basel); 2015 Jun; 15(6):14079-92. PubMed ID: 26083230
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Determination of Bridge Prestress Loss under Fatigue Load Based on PSO-BP Neural Network.
    Wang Y
    Comput Intell Neurosci; 2021; 2021():4520571. PubMed ID: 34335715
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Structural Health Monitoring Based on Acoustic Emissions: Validation on a Prestressed Concrete Bridge Tested to Failure.
    Tonelli D; Luchetta M; Rossi F; Migliorino P; Zonta D
    Sensors (Basel); 2020 Dec; 20(24):. PubMed ID: 33352961
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Technique for Determining Bridge Displacement Response Using MEMS Accelerometers.
    Sekiya H; Kimura K; Miki C
    Sensors (Basel); 2016 Feb; 16(2):257. PubMed ID: 26907287
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A Study on the Detection of Internal Defect Types for Duct Depth of Prestressed Concrete Structures Using Electromagnetic and Elastic Waves.
    Yoon YG; Lee JY; Choi H; Oh TK
    Materials (Basel); 2021 Jul; 14(14):. PubMed ID: 34300849
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Estimation of Prestress Force Distribution in Multi-Strand System of Prestressed Concrete Structures Using Field Data Measured by Electromagnetic Sensor.
    Cho K; Cho JR; Kim ST; Park SY; Kim YJ; Park YH
    Sensors (Basel); 2016 Aug; 16(8):. PubMed ID: 27548172
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Structural Safety Evaluation of Precast, Prestressed Concrete Deck Slabs Cast Using 120-MPa High-Performance Concrete with a Reinforced Joint.
    Bae JH; Hwang HH; Park SY
    Materials (Basel); 2019 Sep; 12(18):. PubMed ID: 31546786
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Synergic influence of degrading mechanisms and induced loading by prestressing on the concrete: state of the art.
    Jhatial AA
    Environ Sci Pollut Res Int; 2022 Jan; 29(3):3184-3198. PubMed ID: 34731419
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Long-Term Prestress Loss Calculation Considering the Interaction of Concrete Shrinkage, Concrete Creep, and Stress Relaxation.
    Han W; Tian P; Lv Y; Zou C; Liu T
    Materials (Basel); 2023 Mar; 16(6):. PubMed ID: 36984332
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A Machine Learning Approach to Bridge-Damage Detection Using Responses Measured on a Passing Vehicle.
    Malekjafarian A; Golpayegani F; Moloney C; Clarke S
    Sensors (Basel); 2019 Sep; 19(18):. PubMed ID: 31546759
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Experimental Study on Mechanical and Sensing Properties of Smart Composite Prestressed Tendon.
    Dan D; Jia P; Li G; Niu P
    Materials (Basel); 2018 Oct; 11(11):. PubMed ID: 30366385
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Structural Health Monitoring of a Prestressed Concrete Bridge Based on Statistical Pattern Recognition of Continuous Dynamic Measurements Over 14 Years.
    Hu WH; Tang DH; Teng J; Said S; Rohrmann RG
    Sensors (Basel); 2018 Nov; 18(12):. PubMed ID: 30477190
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of structural repairs on the load rating and reliability of a prestressed concrete bridge.
    Debees M; Luleci F; Catbas FN
    Adv Bridge Eng; 2023; 4(1):8. PubMed ID: 37124422
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Development of Embedded EM Sensors for Estimating Tensile Forces of PSC Girder Bridges.
    Kim J; Kim JW; Lee C; Park S
    Sensors (Basel); 2017 Aug; 17(9):. PubMed ID: 28867790
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Vehicle Bump Testing Parameters Influencing Modal Identification of Long-Span Segmental Prestressed Concrete Bridges.
    Hernandez W; Viviescas A; Riveros-Jerez CA
    Sensors (Basel); 2022 Feb; 22(3):. PubMed ID: 35161963
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hysteretic behavior of prestressed concrete bridge pier with fiber model.
    Wang HL; Feng GQ; Qin SF
    ScientificWorldJournal; 2014; 2014():467350. PubMed ID: 24578635
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An Integrated Machine Learning Algorithm for Separating the Long-Term Deflection Data of Prestressed Concrete Bridges.
    Ye X; Chen X; Lei Y; Fan J; Mei L
    Sensors (Basel); 2018 Nov; 18(11):. PubMed ID: 30469405
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.