BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 30959785)

  • 1. Effects of Isosorbide Incorporation into Flexible Polyurethane Foams: Reversible Urethane Linkages and Antioxidant Activity.
    Shin SR; Liang JY; Ryu H; Song GS; Lee DS
    Molecules; 2019 Apr; 24(7):. PubMed ID: 30959785
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Soybean oil-isosorbide-based waterborne polyurethane-urea dispersions.
    Xia Y; Larock RC
    ChemSusChem; 2011 Mar; 4(3):386-91. PubMed ID: 21259447
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Preparation and Characterization of Isosorbide-Based Self-Healable Polyurethane Elastomers with Thermally Reversible Bonds.
    Kim HN; Lee DW; Ryu H; Song GS; Lee DS
    Molecules; 2019 Mar; 24(6):. PubMed ID: 30889870
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Synthesis of highly elastic biocompatible polyurethanes based on bio-based isosorbide and poly(tetramethylene glycol) and their properties.
    Kim HJ; Kang MS; Knowles JC; Gong MS
    J Biomater Appl; 2014 Sep; 29(3):454-64. PubMed ID: 24812276
    [TBL] [Abstract][Full Text] [Related]  

  • 5. On the versatility of urethane/urea bonds: reversibility, blocked isocyanate, and non-isocyanate polyurethane.
    Delebecq E; Pascault JP; Boutevin B; Ganachaud F
    Chem Rev; 2013 Jan; 113(1):80-118. PubMed ID: 23082894
    [No Abstract]   [Full Text] [Related]  

  • 6. Synthesis of bio-based thermoplastic polyurethane elastomers containing isosorbide and polycarbonate diol and their biocompatible properties.
    Oh SY; Kang MS; Knowles JC; Gong MS
    J Biomater Appl; 2015 Sep; 30(3):327-37. PubMed ID: 26055962
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Catalyst-dependent drug loading of LDI-glycerol polyurethane foams leads to differing controlled release profiles.
    Sivak WN; Pollack IF; Petoud S; Zamboni WC; Zhang J; Beckman EJ
    Acta Biomater; 2008 Sep; 4(5):1263-74. PubMed ID: 18440884
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Introduction of Reversible Urethane Bonds Based on Vanillyl Alcohol for Efficient Self-Healing of Polyurethane Elastomers.
    Lee DW; Kim HN; Lee DS
    Molecules; 2019 Jun; 24(12):. PubMed ID: 31212813
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Simultaneous drug release at different rates from biodegradable polyurethane foams.
    Sivak WN; Zhang J; Petoud S; Beckman EJ
    Acta Biomater; 2009 Sep; 5(7):2398-408. PubMed ID: 19398389
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Non-isocyanate urethane linkage formation using l-lysine residues as amine sources.
    Peixoto C; Soares AMS; Araújo A; Olsen BD; Machado AV
    Amino Acids; 2019 Sep; 51(9):1323-1335. PubMed ID: 31399841
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Thiol-Ene Coupling of High Oleic Sunflower Oil towards Application in the Modification of Flexible Polyurethane Foams.
    Dworakowska S; Cornille A; Bogdal D; Boutevin B; Caillol S
    Materials (Basel); 2022 Jan; 15(2):. PubMed ID: 35057346
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Isocyanate- and phosgene-free routes to polyfunctional cyclic carbonates and green polyurethanes by fixation of carbon dioxide.
    Blattmann H; Fleischer M; Bähr M; Mülhaupt R
    Macromol Rapid Commun; 2014 Jul; 35(14):1238-54. PubMed ID: 24979310
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Efficient recycling pathway of bio-based composite polyurethane foams via sustainable diamine.
    Recupido F; Lama GC; Steffen S; Dreyer C; Seidlitz H; Russo V; Lavorgna M; De Luca Bossa F; Silvano S; Boggioni L; Verdolotti L
    Ecotoxicol Environ Saf; 2024 Jan; 269():115758. PubMed ID: 38128448
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Synthesis of a novel biomedical poly(ester urethane) based on aliphatic uniform-size diisocyanate and the blood compatibility of PEG-grafted surfaces.
    Liu X; Xia Y; Liu L; Zhang D; Hou Z
    J Biomater Appl; 2018 May; 32(10):1329-1342. PubMed ID: 29547018
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Isocyanate emissions from pyrolysis of mattresses containing polyurethane foam.
    Garrido MA; Gerecke AC; Heeb N; Font R; Conesa JA
    Chemosphere; 2017 Feb; 168():667-675. PubMed ID: 27836276
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of preparation routes on the physical and rheological properties of isosorbide-based thermoplastic polyurethanes.
    Jeong JH; Kim HJ; Choi YH; Song GS; Yoo SI; Eom Y
    Macromol Res; 2023; 31(2):133-142. PubMed ID: 36844252
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Water-Induced Self-Blown Non-Isocyanate Polyurethane Foams.
    Bourguignon M; Grignard B; Detrembleur C
    Angew Chem Int Ed Engl; 2022 Dec; 61(51):e202213422. PubMed ID: 36278827
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Polyurethanes from isosorbide-based diisocyanates.
    Zenner MD; Xia Y; Chen JS; Kessler MR
    ChemSusChem; 2013 Jul; 6(7):1182-5. PubMed ID: 23757328
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Catalyst-free synthesis of high elongation degradable polyurethanes containing varying ratios of isosorbide and polycaprolactone: physical properties and biocompatibility.
    Park HS; Gong MS; Knowles JC
    J Mater Sci Mater Med; 2013 Feb; 24(2):281-94. PubMed ID: 23183961
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Short-term in vitro and in vivo biocompatibility of a biodegradable polyurethane foam based on 1,4-butanediisocyanate.
    van Minnen B; van Leeuwen MB; Stegenga B; Zuidema J; Hissink CE; van Kooten TG; Bos RR
    J Mater Sci Mater Med; 2005 Mar; 16(3):221-7. PubMed ID: 15744613
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.